Transfer of Environmentally Sound Technologies fog2aftally Sound Technologies

CONTENTS

Abbreviations and Acronyms

Executive Summary

PART I INTRODUCTION

- **1** Technology transfer, economy and environment
- 2 Environmentally sound technologies in international processes and agreements

PART II IMPROVING TRANSFER OF ENVIRONMENTALLY SOUND TECHNOLOGIES

- **3** Barriers to successful transfer of environmentally sound technologies
- 4 Improving transfer of environmentally sound technologies

PART III ENVIRONMENTALLY SOUND TECHNOLOGIES IN PRACTICE

- 5 Selected environmentally sound technologies
- 6 Case study: transfer of environmentally sound technologies for mangrove forests

PART IV THE WAY FORWARD

- 7 Setting priorities for action
- 8 Recommendations for promoting the international transfer of

ABREVIATIONS AND ACRONYMS

ACOPS	Advisory Committee on Protection of the
	Sea
AfDB	African Development Bank
AsDB	Asian Development Bank
AHEG	Ad hoc expert group established by
	ECOSOC to support the UNFF
AOX	Absorbable organo-halogens
APCTT	Asia and the Pacific Center for Transfer of
	Technology
BIG/CC	Biomass integrated gasification/combined
	cycle
BOT	build-operate-transfer
C&I	Criteria and indicators
CATIE	Tropical Agriculture Center for Research
	and Education
CBD	Convention on Biological Diversity
CDM	Clean Development Mechanism established under the UNFCCC
CERUPT	Certified Emission Reduction Unit
	Procurement Tender
CESTT	Centre for Environmentally Sound
	Technology Transfer
CHP	Combined heat and power
CICI	International Conference on the
	Contribution of Criteria and Indicators
	for Sustainable Forest Management
CIFOR	Centre for International Forestry Research
COD	Chemical oxygen demand
СОР	Conference of the Parties

CSD	Commission on Sustainable Development
CTFS	Center for Tropical Forest Science
COCATRAM	Central American Commission for Maritime
	Transportation
ECOSOC	Economic and Social Council of the United
	Nations
ERU-PT	Emission Reduction Unit Procurement
	Tender
ESCAP	United Nations Economic and Social
	Commission for Asia and the
	Pacific
EST	Environmentally sound technology
FAO U	

ICT	Information and communications
	technologies
IETC	UNEP's International Environmental
	Technology Centre
IFF	Intergovernmental Forum on Forests
IIED	International Institute for Environment and
	Development
IMF	International Monetary Fund
IPCC	Intergovernmental Panel on Climate Change
IPE	Investment Promotion Entity
IPF	Intergovernmental Panel on Forests
IPGRI	International Plant Genetic Resources
	Institute
IPR	Intellectual property rights
ISO	International Organization for
	Standardization
IUFRO	International Union of Forestry Research
	Organizations
LDCs	Least developed countries
MEAs	Multilateral environmental agreements
MNCs	Multinational corporations
NFPs	National forest programmes
NGOs	Non-governmental organizations
ODA	

SME	Small and medium enterprises
STOA	Scientific and Technological Options
	Assessment of the European
	Parliament
STRI	Smithsonian Tropical Research Institute
TERI	Tata Energy Research Institute
TESTs	Transfer of environmentally sound
	technologies
TFP	Total factor productivity
TRIPS	Trade-Related Aspects of Intellectual
	Property Rights
TSS	Total suspended solids
UNCCD	United Nations Convention to Combat
	Desertification
UNCED	United Nations Conference on Environment
	and Development
UNEP	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on
	Climate Change

EXECUTIVE SUMMARY

In the intergovernmental policy formulation process, the transfer of environmentally sound technologies (TESTs) has been recognized as one of the principal means for the achievement of sustainable development. tranachIrgovernm sustainable development. Forces resisting the adoption of new technologies form a major development impediment.

International initiatives and processes since the Rio Declaration have given significant emphasis to technology transfer. Progress, however, has not been overwhelming. Technology transfer is failing to close the technology and income gap. Divergence, not convergence, some fear, might be the result of technological progress, fostered by the information and communications technologies (CT) revolution. Access to technology is a major development issue and we need solutions to the obstacles for efficient global technology transfer.

The framework developed in this study emphasizes the need to view barriers to the successful transfer of environmentally sound technologies from the perspective of both supply and demand. This volume analyzes the obstacles and identifies approaches for improving TESTs. Especially it identifies ways through which the public sector and the international community could contribute to EST transfer.

Technology transfer for sustainable forest management and forest industries faces the same general constraints that prevail for other sectors. In addition to general challenges, the forest sector has a set of specific challenges. Technology transfer to forest industries requires different strategies compared to sustainable forest management. Transfer in the industry sector **i** largely a private sector activity, while the public sector role is pronounced in the area of management technologies. Low short-term returns of forestry, the restricted financial capacity of forest administrations to purchase services from the private sector, large conservation areas in public ownership, among others, hinder private sector participation and leave the government with significant responsibilities. Transfer of environmentally sound technologies to forestry will continue to take place largely on a government-togovernment basis and enhancing its effectiveness constitutes an important development area. However, increasing attention must be paid to the role of private sector in EST transfer to make best use of the opportunities provided by privatization, development of timber concessions, and expansion of plantation forestry.

There are barriers specific to TESTs within the forest sector and outside forest sector. Regarding an enabling environment for EST transfer, most existing barriers are not specific to EST or the forest sector. Instead, they result from international agreements (e.g., WTO agreements) or national policies or the macroeconomic framework (e.g., import tariffs for technology), which are designed outside the forest sector. There can also be fundamental bottlenecks impeding EST adoption (e.g., lack of forest law enforcement capacity). The need to promote EST transfer is a contributing argument, but not a key driver for decisions to take action to eliminate such constraints. While one can and should attempt to influence these decisions from the perspective of EST transfer, it is likely that many of the barriers will prevail. Therefore, the strategies to promote EST transfer have to adapt and be designed so that they can function in an imperfect environment.

PART I: INTRODUCTION

1. TECHNOLOGY TRANSFER, ECONOMY AND ENVIRONMENT

1.1 What do we mean by environmentally sound technologies?

Environmentally sound technologies for sustainable forest management (SFM)) encompass a broad range of technologies, knowledge and policy instruments. These can include scientific know-how, traditional forest-related knowledge, assessment and monitoring technologies, integrated information management systems, sustainable forest management practices, silviculture, harvesting and processing technologies, recycling of wood, fuel wood energy technologies, sound technologies for secondary wood products, economic instruments and mechanisms for SFM, certification and labeling approaches and forest-related climate change mitigation mechanisms (UNFF Secretariat 2003).

Technology is defined as the application of scientific and technical knowledge for practical uses in industry. According to chapter 34 of Agenda 21, environmentally sound technologies are not just individual technologies, but total systems which include knowhow, procedures, goods and services and equipment, as well as organizational and managerial procedures.

In its report "Methodological and technological issues in technology transfer", the Intergovernmental Panel on Climate Change (IPCC) also utilizes a broad definition or technologies in the forest sector. These technologies can include genetically superior planting material, improved silvicultural practices, sustainable harvest and management practices, protected area management systems, substituting fossil fuels with bioenergy, incorporating indigenous knowledge in forest management, efficient processing and use of forest products and monitoring of area and vegetation status of forests. These technologies can meet several objectives, including conserving forest biological diversity and watersheds, enhancing sustainable forest product flows, increasing the efficiency of use of forest products and maximizing the resiliency of forest ecosyste

income differences: factor accumulation is not a sufficient explanation for their magnitude and persistence. A vital body of economic literature has emerged challenging the neoclassical view of economic growth and seeking explanations for the bulk of income differences that remain unexplained even when physical and human capital accumulation is accounted for (Barro and Salai-Martin 1992, Fagerberg 1994, Prescott 1998, Easterly and Levine 2002). Growth of total factor productivity (TFP) due to technological change, and barriers to it, many argue, should account for the unexplained part of income differences. Technological progress and productivity growth as a result of profit-motivated innovations and innovation stimulating economic incentives are seen as a major engine for growth (Grossman and Helpman 1991). While capital accumulation is essential for igniting economic progress -- education, for example, is indeed a necessary precondition for technological diffusion (Thomas et al. 2000) -- technological progress is a major factor shaping global income distribution.

a t ofrom drvitg economic prowth , echnole rowth Tj 33 0 TD -.75 Tw 3(.) Tj -324025 013.5 TD -0.0675 Tc 36

alongside technological progress, development of an appropriate policy and legal framework ensures that technologies are indeed used in an environmentally sound way. Environmental regulation can induce innovation of products and processes that are not only more efficient but also more environment-friendly (Porter and van der Linde 1995). Trends in innovation represented by patenting have reflected regulation (Lanjouw and Mody 1996). Policies promoting development and diffusion of technologies are probably among the most important factors affecting environmental protection (Kneese and Schultze 1975). Different types of policy interventions have been designed to foster invention and diffusion of environmental technologies (Jaffe and Stavins 1995). Typically, policy decisions need to be taken in less than perfect conditions, under uncertainty and between complex choices (Foray and Grübler 1996). A wide range of policies are needed that, on one hand, enhance the generation of long-term solutions and environmentally sound technological alternatives, and, on the other hand, policies that control environmental impacts in the short-term. Regulation can either inhibit or foster technological change, depending on the choice and design of the instrument (Wiener 2004).

1.3 Technology transfer, environment and equality

Technological knowledge has important characteristics. First of all, technological knowledge can be used simultaneously by several users beyond the original ones, by different firms and in different countries (Kong and Keller 2003). Economists would say that technology is non-rival in consumption, unlike capital inputs -- both human and physical -- that can be used only at one place at a time. Second, the investment for creating new technology benefits not only the investor but creates also public benefits (Jaffe 1989).

new technologies processes, etc., and indirectly from imports of goods and services (Coe and Helpman 1995). International economic relations, particularly international trade but also FDI (Sinani and Meyer 2004, Blomstrom et al. 2000) are important avenues of technology transfer and foster productivity growth (Grossman and Helpman 1994, Cameron et al. 2004). Forces resisting the adoption of new technologies and increasing the costs become a matter of focus.

Technology imports indeed outnumber innovations in importance in developing countries (Zou 1995). The relative importance of foreign technologies in least-developed countries is 90 per cent or higher (Gong and Keller 2003). Technology imports are the major factor of technological change also in OECD countries (Eaton and Kortum 1999, Keller 2002), and, as a matter of fact, even 90 per cent of technology transfer takes place in the trade of North America, Western Europe, and Japan (Sandbrook 1995).

Diffusion - or technology transfer if you like - levels technological differences. International technology diffusion can either increase income differences or work for more equal income distribution depending on how uniformly technological flows spread and whether developing countries gain access to foreign technologies. Technology transfer has been given significant emphasis in international initiatives and processes, for example in the Rio Declaration. Progress, however, has not been impressive (United Nations 2002). Technology transfer is failing to close the technology and income gap (UNEP 2003). Divergence, not convergence, some fear, might be the result of technological progress, fostered by the ICT revolution if developing countries cannot fully participate. Diffusion of technology is a major development challenge and it is of crucial importance to identify the obstacles for efficient global technology transfer.

<u>1.4</u> Why are innovations not adopted?

Diffusion is naturally a long process, typically characterized by diffusion rates that after a slow start gradually lead to a rapid expansion that finally slows down when approaching the saturation point, resembling the famous S-curve of technology diffusion (Mansfield 1963, Geroski 2000). This pattern is partly due to the decreasing cost of adoption. The early adopters

technology. This is a valid concern and a balanced demand-supply framework should be an answer to this confusion. There are only equal partners in a successful technology transfer. Technology diffusion that is frequently cited in the scholarly literature may not reinforce the attitudinal bias that is often connected to the term technology transfer.

The IPCC definition for technology transfer is a fruitful starting point. This broad definition overcomes the problems associated with the narrow interpretation and provides a basis for a balanced framework:

> "The broad and inclusive term "transfer" encompasses diffusion of technologies and technology co-operation across and within countries. It covers technology transfer processes between developed countries, developing countries and countries with economies in transition, amongst developed countries, amongst developing countries and amongst countries with economies in transition. It comprises the process of learning to understand, utilise and replicate the technology, including the capacity to choose it and adapt it to local conditions and integrate it with indigenous technologies."

The framework developed by Puustjärvi et al for this volume emphasizes the need to view barriers to the successful transfer of ESTs using a demand-supply based systems approach. Is a global framework for improving EST transfer at all possible or meaningful? It is. This volume analyzes the obstacles and identifies approaches for improving TESTs. In particular, it identifies ways through which the public sector and the international community could contribute to EST transfer. The forest sector faces the same general constraints that characterize the operating environment in other sectors. In addition to those, it has a set of its own challenges, thanks to its peculiar nature. Very different logic governs the technology transfer for compared to forest industries that of sustainable forest management. Transfer in the industry sector is largely a private sector activity while the public sector role is pronounced in management technologies. Low short-term returns of forestry, the restricted financial capacity of forest administration to purchase services from the private sector, large conservation areas in public ownership, etc. hinder private sector participation and leave the government with significant responsibilities. EST transfer in forestry will continue to take place largely on a government-togovernment basis, so enhancing its effectiveness constitutes an important development area. However, increasing attention must be paid to the role of the private sector in EST transfer to make best use of the opportunities provided by privatization, development of timber concessions, and expansion of plantation forestry.

1.6 Structure of this study

A short description of international processes and agreements that are central to international technology transfer is provided in the following chapter. Chapter three analyzes the constraints inhibiting technology transfer process. It sets forth a fundamental argument that many of the impediments for EST transfer come from outside the forest sector. International agreements, national policy and macroeconomic frameworks shape the environment for EST transfer like for any other sector. Therefore policies for promoting EST transfer need to be designed for an imperfect environment.

Small and medium-size enterprises are dominant and lack finance and interest in investing in EST. Inadequate environmental regulation and enforcement restrict demand for EST. Unsustainable practices are more profitable. An enabling policy ESTs is challenging and often public policies, even forest policies, contribute to low profitability. Support to research increasing competitiveness and removal of perverse incentives is recommended.

Insufficient capacity is hindering EST transfer at all levels of the process. Due to the specific nature of forestry, capacity to adapt existing technologies to local conditions is highlighted. However, the ultimate goal should be to build an autonomous capacity to acquire, adapt and further develop technologies. This contributes to general technological capabilities and is not specific to any particular technology.

Chapter four also discusses international and domestic supply of ESTs. It states that most hindrances to the supply of ESTs are market-related and dependent on international or macroeconomic policies. It discusses trade liberalization and intellectual property rights in a situation where the great majority of patents are owned by the industrialized countries. Needs in forestry are highly location and context-specific and not easily transferred without substantial modifications. South-south transfer is likely to become more important because of similarities in ecological conditions. The same barriers impeding international transfer constrain domestic diffusion. Specifically, at the domestic level, poor functioning of market mechanisms, the small number of players and monopolistic structures hamper TESTs.

Financing is a crucial element of the transfer of ESTs, which are typically characterized by high capital investment and low operating costs. While efforts to increase flows are necessary, it is pointed out that increased financing does not necessarily lead to increased transfer of ESTs. Attention should also be paid to the existing flows to make sure that they support ESTs. There is evidence that FDI brings along environmentally sound practices. However, the share in forestry of private investment is most likely small and FDI is concentrated in a handful of countries. The forest sector has basically indirect measures at hand to increase the flow of FDI. Adding ESTs criteria in loans is also suggested.

Chapter five states that the assessment of country and sectorspecific conditions should be the basis for policies aimed at supporting EST transfer. Proper technology assessment, including identification and selection of ESTs, is a crucial step in policy formulation and has often been neglected in the past. The ability to contribute to solving environmental issues, sustained impact, social implications and cost-effectiveness are key elements affecting the choice of technology. Compatibility with indigenous technologies is also important.

Constraints to technology transfer exist both outside and inside the forest sector and the actual impact of ESTs are often below their potential. Barriers that directly impede TESTs should be the priority area for action. The international community should focus on the least developed countries. Initially, mechanisms that encourage the adoption of existing technologies are the priority area, but the long term objective should be an autonomous capacity to create new technology.

Chapter six reviews some of the central environmentally sound technologies and chapter seven illustrates an important example of a special situation for technology transfer in the case of mangrove forests. One of the important lessons of the analysis by COCATRAM is that South-South **t**ansfer of ESTs is becoming increasingly important but still very limited. Chapters eight and nine conclude and give a summary of the recommendations.

2. THE TRANSFER OF ENVIRONMENTALLY SOUND TECHNOLOGIES IN INTERNATIONAL PROCESSES AND AGREEMENTS

2.1 International processes

Technology transfer is a cross-cutting issue addressed by a number of international processes, including several multilateral environmental agreements. It is a priority area particularly for developing countries and a critical element for securing their participation in these processes.

UNCED

Technology transfer has been recognized as a key "means of

IPF/IFF and the United Nations Forum on Forests

In the forestry sector, the global efforts to promote EST transfer have taken place under the ad hoc IPF/IFF processes and the United Nations Forum on Forests

- (5) Promoting dissemination and sharing of technologies with end users
- (6) Strengthening education and training for women in community development programs

The UN Forum on Forests has been made responsible for the implementation of the IPF/IFF Proposals, including those related to technology transfer. Its Plan of Action includes 16 elements, one of which focuses on the "international cooperation in capacity building, and access to, and transfer of, environmentally sound technologies". To emphasize the issue, the UN Forum on Forests at its third session, held in Geneva from 26 May to 6 June 2003, agreed on the establishment of an ad-hoc expert group on finance and transfer of environmentally sound technologies (AHEG).

The ad hoc expert group met in Geneva from 15 to 19 December 2003. Decision IV/1 of the UNFF establishes that the recommendations contained in the report of the meeting are to be taken into account in the future work of the Forum of finance and transfer of ESTs. These recommendations serve as the basis for the recommended actions provided in this study.

Subsequently, a country-led initiative on transfer of ESTs and capacity building for SFM was hosted by the Government of the Republic of Congo in Brazzaville from 24 to 27 February 2004. This meeting took into account the comprehensive nature of the work of the ad hoc expert group of the UN Forum on Forests. It continued discussions on key issues of key importance, particularly to African countries.

2.2 Multilateral Agreements

UNFCCC

The most important multi-lateral environmental agreement with references to technology transfer in forestry is the United Nations Framework Convention on Climate Change (UNFCCC). Under the Convention, Annex II Parties shall "take all practicable steps to promote, facilitate and finance, as appropriate, the transfer of, or access to, environmentally sound technologies and know-how to other Parties, particularly to developing countries to enable them to implement the provisions of the Convention" (Article 4.5). Pursuant to this commitment, the Parties have taken decisions to promote the development and transfer of environmentally sound

CBD

The Parties to the Convention on Biological Diversity (CBD) have pledged to promote "technologies that are relevant to the conservation and sustainable use of biological diversity or make use of genetic resources and do not cause significant damage to the environment" (Article 16). To this end, the Convention has, inter established a "clearing-house mechanism" promoting alia. cooperation among Parties in six key areas, one of which is technology transfer. Notably, technology transfer and capacity building were major themes of the seventh Conference of the Parties of the Convention in 2004. With respect to forestry, the COP 6 adopted an Expanded Program of Work on Forest Biological Diversity. Technology transfer was identified as one of program activities, with particular references to development of information technology (remote sensing, geographic information systems and data systems).

UNCCD

The United Nations Convention to Combat Desertification (UNCCD) commits the signatory parties, *inter alia*, to promote the "transfer, acquisition, adaptation and development of technology" (Article 18). The transfer of technology does not appear to be a focal area of the convention, but the issue is addressed under the thematic regional networks in Africa and Asia. Forestry-related technologies promoted under these UNCCD networks relate to monitoring of desertification and promotion of renewable energy sources and agroforestry (UNCCD 2003).

<u>2.4 WTO</u>

The Agreements of the World Trade Organizatio 20205i Ej0.7711514005009

PART II: IMPROVING THE TRAN**9**FE**IC** OF ENVIRONMENTALLY

ENVIRONMEN

3.2 Economic Viability

In most sectors, the private sector is often seen to be the key agent for technology transfer. However, in the forestry sector of developing countries the role of the public sector can be prominent. The public sector is often directly involved in sustainable forest management in addition to fulfilling its regulatory function. The short time preference of profit-oriented
to have a poor understanding of financing of SFM and its downstream operations (Thiruchelvam *et al.* 2003).

Even when investments are made, the SME owners tend to place more emphasis on capacity expansion than on environmental management. Adoption of new technologies carries significant transaction costs in the form of management effort, training and capacity building, and SME managers are reluctant to divert their attention to tasks that they do not see as critical for the company's performance (Thiruchelvam *et al.* 2003, IETC, undated). A survey carried out in the Asia-Pacific region among various industries, including pulp and paper, showed that most firms would not make substantial capital investment in cleaner production except when such elements can be incorporated in greenfield or other new production lines (cf. Llanto 2000).

In developing countries, SMEs dominate the woodworking industries; oftentimes enterprises in the pulp and paper sector are also small. SMEs use most of the industrialized wood raw material and also provide most of the employment. SMEs are, however, often ignored when policies and strategies for the forest sector are drafted. With respect to forest management, the private sector has limited interest in investing in SFM because of high perceived risks and relatively low rates of return of SFM compared to other investments (including unsustainable forest management). For the same reason, foreign investors tend to be more interested in opportunities arising in the forest industries than in SFM.

Corporate and consumer awareness of environmental issues is not yet firmly rooted in developing countries, and there is only limited domestic market-based pressure to enhance environmental performance and introduce ESTs. Capacity to adopt voluntary environmental standards is limited and approaches suitable for SMEs are generally unavailable. Producer countries involved in exporting primary or further processed products to international markets are, however, increasingly experiencing consumer and buyer pressures to provide assurances that products originate from areas that are sustainably managed and that the legal requirements are complied with.

Acquisition of ESTs by communities and farmers is constrained by a lack of knowledge, limited access to capital and the unavailability of effective extension services. Small-scale loan facilities are seldom available.

3.3 Policy and Legal Framework

The lack or inadequacy of environmental regulations and standards and the weak enforcement of existing regulations are major factors restricting the demand for ESTs. The financial returns from investing in ESTs are often low because sales prices can be kept artificially low due to the dominance of unsustainable environmental practices causing externalities that entail no cost to the technology user. The limited adoption of reduced impact logging (RIL) techniques is a typical example of a situation where the regulatory framework is lagging behind enabling unsustainable practices. While the environmental benefits of RIL would be significant, its implementation creates an additional cost for the producer. Given the limited or non-existent regulatory pressure, most operators choose to carry on with conventional techniques.

Distortions in the general economic framework and policies may also reduce demand for ESTs. In many countries, timber prices are often set administratively, and if they are set too low below the market price, they reduce the profitability of SFM and the demand for ESTs. Agricultural and land policies reducing the relative profitability of SFM have the same effect. Lack of clear tenure arrangements reduces the incentives of forest users to invest in ESTs. Lack of coherent sectoral plans and policies increases uncertainty and makes it difficult to identify appropriate forest technologies and to develop strategies for their implementation and sustainable use. Moreover, technology issues are generally not dealt with in sectoral plans such as national forest programs (NFPs).

The forest sector in developing countries is often in chronic shortage of funds, both in terms of operational and investment finance. External funding is critical; an FAO survey (1997) revealed that 60% of responding countries relied on foreign sources for the greater part of their forest sector funding.

3.4 Capacity

Lack of capacity in developing countries to assess, select, import and adapt ESTs is effectively hindering technology transfer and

a5 Tw (e5 0 ien Tj -(TERI 25 -13. Tw (s18nal) Tj 33) Tj 0 -13.5 TD (18

administrations have difficulty to keep their technologies operational, and the equipment often deteriorate fast.

3.5 Information

Local intermediaries able to facilitate EST transfer are often weak. Extension services have limited capacity and the potential of (including forest owner/producer organizations) NGOs to contribute to dissemination of information on ESTs is often not recognized or ignored. Both extension services and NGOs often have inadequate technical capacity and an inadequate focus on technology. The consulting sector remains weak owing to limited demand, and, on the supply side, service-oriented R&D organizations or centers of technological knowledge are few and far apart. Their programs are frequently dissociated from the actual needs of forest owners and managers. Coordination and cooperation amongst forest producers and forest industry are often non-existent or inadequate, driven by short-term market interests.

Largeec, anln.75 om shortcooperation amongst fo

limited for small-scale mass products such as improved stoves or for technologies suitable for commercially less attractive dry tropical forests. Innovations based on traditional forest-related knowledge or ESTs needed by disadvantaged groups, such as communities or women, have not been considered when setting priorities for EST development.

4. IMPROVING THE TRANSFER OF ENVIRONMENTALLY SOUND TECHNOLOGIES

4.1 Framework for EST Transfer

In examining opportunities to improve EST transfer to the forest sector in developing countries, the focus here is on identifying ways through which the public sector and the international community could contribute to EST transfer. The emphasis is on actions that policy-makers in government institutions directly responsible for public policies in forestry or forest industries can take. Policies in other sectors with relevance to EST transfer in the forest sector are also identified, but their analysis and the respective recommend ations are made with less detail.

The public sector is here treated as one block, even though in reality there are a host of organizational models involving different decision-making processes. For instance, forestry and forest industries are usually administratively placed under different ministries and are thus subject to different decision-making procedures. As regards the international community, the roles of bilateral and multilateral organizations are distinguished.

The transfer of ESTs is a result of demand and supply meeting specific needs. The promotion of EST transfer consists of various ways of influencing the factors behind demand and supply (Fig. 2). The rate of technology transfer is affected both by motivations that induce more rapid adoption of new techniques and by barriers that impede such transfers. Both types of factors can be influenced by policy (IPCC 2000). Typically, the impacts are interrelated, and the best effect is not reached by applying one single instrument but a combination of several instruments (UNFCCC 1998).

Many of the necessary measures are part and parcel of "ordinary" sectoral development, especially those that relate to developm

Figure 2. Supply and Demand of Environmentally Sound Technologies

margin. The public sector can also apply instruments (e.g., tax breaks and subsidies) to make those ESTs more attractive that would provide a net social benefit but are not profitable or economically viable.

Privatization is a major trend in developing countries and it is expected to give a direct boost to the demand for ESTs, while opening new possibilities to finance the acquisition of technology. Converting public enterprises into private companies is a major feature of the economic restructuring of many developing countries. There is considerable scope for including EST criteria in the structuring, tendering, negotiating and financing of privatization programs. In the forest sector, this applies in particular to privatization of heavier industries such as pulp and paper mills, which are still in public ownership in some developing countries.

Private sector participation may also increase through other mechanisms than privatization. Public sector institutions can increase the purchase of various services from the private sector, including (i) operation on a day

of tropical forests, while a huge area of low-yielding forests (especially drylands) benefits only from very limited R&D inputs. For example, forest plantation productivity has increased spectacularly and average growth rates of $20-30m^3/ha/yr$ are reached in operational activities. Still, with few exceptions, timber species grown on nedium and bng rotations have not benefited from these technological advances. They have limited appeal to commercial investors, who prioritize fast-growing species (Sayer *et al.* 1997).

Recommended actions:

- Remove perverse incentives reducing the relative profitability of SFM and undermining the demand for EST investments.
- Support research to increase the competitiveness of sustainable forest management outside the high-yielding commercially attractive forests.

4.2.2 Legal and Regulatory Framework

One of the main reasons for low demand for ESTs in developing countries is the lax or non-existent regulatory framework for environmental protection. The negative environmental effects unsustainable (externalities) caused by practices not are internalized to capture the environmental and social costs. An appropriate regulatory framework can, however, be an effective instrument in promoting demand for ESTs. Stronger regulations and improved enforcement would increase the cost of noncompliance and strengthen the demand for ESTs. Generally speaking, the most efficient policies are those, which set targets for the private sector and leave them the freedom to choose how to meet those targets.

Finland, among many other developed countries, established an environmental permit system, which was crucial in reducing industrial pollution in the pulp and paper industries. The permit regulations speeded up the adoption of advanced techniques and created a market for environmentally friendlier solutions (Hildén *et al.* 2002). In developing countries, a study commissioned by UNIDO (2002) on EST adoption in the pulp and paper industries of selected countries suggests that regulatory pressure is the single most important driver for EST investment. For instance, in Brazil the strict limits imposed by environmental regulators were found to be strong drivers for innovation and the adoption of ESTs. Similar results were found in a survey carried out by the United Nations Economic and Social Commission for Asia and the Pacific among environmental oversight bodies and commercial companies in developing countries (ESCAP 2001, cf. IETC undated).

Despite their potential effectiveness, regulations are often politically controversial. Governments may be reluctant to introduce them, because they fear that they will reduce the competitiveness of domestic industries, the fiscal revenue potential for the government and the earnings of logging companies (IPCC 2000). The overall policy and institutional environment is also important. For firms operating in free market conditions in Brazil and India, regulatory pressure was the most important reason for EST investments. In the socialist economies of China and Vietnam, the reduction in raw material costs was the key driver. However, even in the latter case, regulations were the second most important reason for adopting ESTs (UNIDO 2002).

Most of the available examples on the impact of regulation are from forest industries, since industrial activities are easier to control than forest management. Production is concentrated in a

Recommended actions:

- Introduce appropriate environmental regulations and strengthen the capacity to enforce them effectively.
- Promote independent auditing and certification as voluntary measures to compliance with environmental regulations.
- Where necessary, clarify property rights related to forest land and introduce effective and secure land tenure as a precondition for EST investment.

4.2.3 Capacity Building

EST transfer is a highly complex undertaking requiring strong implementation capacity at all stages. Capacity building is a slow and multi-faceted process needing long-term commitments on the part of the various stakeholders. Many of the requirements are cumulative and involve tacit knowledge that can only be acquired through an incremental learning proc capacity development, the transfer should encompass (i) knowledge and competence necessary to operate and maintain the technologies transferred and (ii) knowledge, competence and experience to simulate, create and lead technology change and development in the recipient country (TERI 2000). To enhance these capabilities improvements are needed both in taining and research and development.

Successful transfer of ESTs requires the existence of basic technical skills among the recipients. The immediate need is for operational and maintenance skills, which both technology buyers and sellers usually focus on. Technology sellers often help with long-term training packages. Still, transferred technologies are often running much below their operational capacity suggesting that all shortcomings in the basic educational level cannot be overcome with short-term training. Enhancing skills related to specific technologies cannot fully address the fundamental problems, such as gaps in the basic education. As one response to this problem, new forms of technology transfer are emerging in the forest sector. As an example, improved forest auditing and log tracking systems are being offered to developing countries using the build-operate-transfer (BOT) approach where the supplier designs the systems, sets it up, recruits and trains local staff to run the system for an initially period, and then transfers the operations to the recipient when the system has been well established and operates smoothly. The BOT approach and its variants have been successfully used in production and their application is now broadening to other areas to overcome the difficulties of the technology transfer process. In spite of higher costs, these approaches substantially increase the probability of successful transfer addressing the problem of the recipient organization's capacity constraints.

Another specific problem is lack of skills in Information and Communication Technologies (ICT), which in many cases are in close relationship with the capacity to use ESTs (cf. TERI 1997). These technologies are gaining an increasingly important role in management planning monitoring. and forest forest law enforcement. wood procurement, organizations and forest industries.

Foreign investment has the potential to serve as an effective vehicle for transferring capacity, but it does not automatically lead to it, and special measures are needed to ensure the development of local capacity. There are short-term incentives both for the technology supplier and the recipient that work against it. For instance, the supplier's wish to maintain control over the transfer process and the recipients' tendency to minimize expenditure on capacity building by employing foreign consultants on an "asneeds" basis (Warhurst 1999). The acquisition investment should be considered in the systemic context where the expected outputs are weighed against all the necessary elements of a successful EST transfer. Such a holistic analysis covering all the ancillary costs is rarely done in forest management investments and improved technologies remain unutilized due to inadequate capacity building in the organizations.

Environmental management and addressing the social issues related to forest operations are a key area of sustainable forest management. In these two fields, operators in developing countries have also limited capability. Insufficient consideration of these aspects in the investment process has often led to environmental damage and social conflicts. These issues tend to be considered peripheral from the traditional investor's point of view. A holistic approach within the context of Insufficient capacity is apparent at many different levels of the technology transfer process from decision making about appropriate technology to establishment of appropriate management practices for ESTs. SMEs are especially

Recommended actions:

- Raise awareness among decision-makers on the capacity building methods related to EST transfer as well as the potential of new transfer mechanisms to overcome capacity constraints (e.g., build-operate-transfer).
- Strengthen environmental curricula in educational institutions for forestry and forest industries, highlighting EST applications as well as management of environmental and social impacts and risks of forestry operations.
- Facilitate the flow of information on ESTs to forest-related educational establishments by developing links to information networks and by strengthening cooperation with enterprises and public institutions using ESTs.

Research and Development

The main challenge regarding knowledge transfer is to create sufficient capacity for EST transfer and development of indigenous technology. This will ensure that the transfer process does not become a one-off event without having replicative and trickledown effects on the economy. Enhancing the quality of research and development (R&D) plays a key role to this end. The significance of R&D has been accentuated by the shorter commercial life-cycle of products (Hoffman 1999). It is equally important for SFM and the utilization of forest products and services, due to rapid change in the operating environment of the forest sector and accumulating scientific knowledge.

Adaptive research needs to be carried out in support of EST transfer. The ultimate aim should be, however, to move to technology development, because this is the area in which the domestic value added is the highest. In developing countries, this is

possible within many fields, particularly where indigenous knowledge of natural resources is crucial. Setting overambitious targets should be avoided, and many smaller countries with weak R&D institutions would be better off focusing on limited niche areas where a critical mass can be created, while drawing on the results generated elsewhere in other areas. The Japanese experience from the past decades shows that the ability to develop technology in an efficient manner usually follows from first having mastered existing technologies developed by others. Stepwise progress towards more ambitious targets ensures that research effor to effectively participate in international research projects, and to adapt and transfer results of the research to the local level. Research on forests has not only suffered from a lack of resources; it has not been sufficiently interdisciplinary to provide an integrated view of forestry (FAO 1997 in IPCC 2000). Forestry research is often an undervalued and under resourced activity with limited external support. For instance, only 2% of the ODA in forestry is spent on research (OECD 2000). In comparison, the allocation for research in agriculture may have been as high as 10% (IPCC 2000).

Forestry research and technical training institutes in developing countries have traditionally been linked more to serve state forestry and public sector organizations rather than the private sector. Several countries are reducing public sector funding of research because of economic constraints. This is being partially offset by increasing private sector investment in R&D by large forest companies, but their focus tends to be on short-rotation industrial species and on processing technologies, while little effort is spent developing ESTs (Szaro et al. 1999). Expansion on of multinational companies brings additional resources to developing countries, but their impact on local research capacity may be limited, because R&D activities are managed at the corporate level. Few institutions, public or private, have used their capacity develop ESTs for the poor forest-dependent people, to disadvantaged groups, such as women, or on commercially less attractive forests. Research efforts to build on traditional forestrelated knowledge have been negligible.

Because low-yielding forests often harbor significant environmental (e.g., biodiversity and watershed functions) or social values (e.g., fuelwood production), the public sector has a special responsibility to ensure that technological development benefits also these areas. Commercial development of ESTs suitable for these conditions is likely to remain limited in developed countries. Instead, companies in developing countries can find a niche market in this area, and therefore South-South EST transfer holds particular promise in this regard. As an example, an improved stove designed after a model developed in Thailand has become a mainstay on the commercial market in Kenya (IPCC 2000).

Escalating R&D costs have encouraged and enhanced collaboration among enterprises and governments to promote technological innovations. However, with the exception of the electronics industry (in a few countries in Southeast Asia), this development has so far not extended to developing country firms to any significant extent (Hoffman 1999). In the forest sector, the situation is highly similar at least with respect to the development of ESTs. However, the emergence of collaboration arrangements is highly desirable, and any initiatives in this regard should be strongly supported.

As a first step, the capacity of the public forest research institutions to participate in R&D must be strengthened. Apart from providing training and increased resources, one of the most promising avenues is Recommended actions:

monitoring capacity. Also, there is a need to support private sector actors and communities in seizing the available opportunities. At the same time, the roles of governments and private actors are commercialization of local technologies (e.g., CESTT in China). In the forest sector, such intermediaries are not well developed, which led to the conceptual development of an "Investment Promotion Entity" that unfortunately did not take off due to many cases, however, forestry extension services are poorly developed, and an alternative approach would be to work through NGOs or producers' associations (e.g., farmers' or industry organizations). For instance, in India there is an NGO-driven large-scale revegetation program, and in Brazil two industry associations are an important source of technological information for the local pulp and paper industries (IPCC 2000, UNIDO 2002).

With respect to the performance of public and private intermediaries, case studies indicate that the Brazilian pulp and paper firms relying on private sector consultants were generally satisfied with the available external support. The companies in China and Vietnam depending on public sector intermediaries found the quality of services low (UNIDO 2002). While this does not mean that services provided by the public sector are necessarily ineffective, the findings support the view that market-based approaches tend to be more effective. The main weakness of a market-based strategy is that it does not necessarily reach the large SME sector or communities, leaving the public sector a large responsibility in this regard.

In order for the public sector intermediaries to work more effectively, they could be made responsible for marketing ESTs and the financial benefits to their staff would depend on the results of their work. This approach holds a lot of promise, but there is little experience in this area. The potential weaknesses are the difficulty in maintaining the neutrality of the service; avoiding concentration of marketing efforts in the more developed, "easier" locations; and ensuring that the most appropriate technology is used. Possible remedies include guidelines, regular reviews, etc. to avoid misconduct. Transactions in more difficult conditions could be rewarded with higher incentives. For such a system to work appropriately careful design and experimentation stages are needed.

The international information networks and clearinghouses that provide advice and training are often necessary to support countrylevel intermediaries. A number of bodies already exist that can be relevant to the forest sector, including:

- **§** The FAO Forestry Program
- **§** The UNFCCC Technology subprogram
- **§** The UNEP/DTIE International Environmental Technology Center (IETC),
- **§** The UNEP International Cleaner Production Information Clearinghouse (ICPIC)
- **§** The UNIDO Cleaner Production (CP) Program
- **§** The International Center for Environmental Technology Transfer (ICETT) (Japan)
- **§** The APEC Virtual Center for Environmentally Sound Technology Exchange (APEC-VC)
- **§** The Asia and the Pacific Center for Transfer of Technology (APCTT)
- § The Center for Environmentally Sound Technology Transfer (CESTT) (China)
- **§** SANet supported by GEF and UNEP (see Box 1.)

Box 1. Sustainable Alternatives Network (SANet)

The Sustainable Alternatives Network (SANet) is a partnership between the United Nations Environment Program (UNEP) and the Global Environment Facility (GEF). Contributing partners are the World Federation of Engineering Organizations (WFEO), the International Federation of Consulting Engineers (FIDIC), and a number of sectororiented organizations. SANet's objective is to develop a cross-cutting communication mechanism, and related information infrastructures that can help address the knowledge management and dissemination needs of technology transfer practitioners whose work affects the implementation of the different MEAs.

The following lessons learned from UNEP's previous projects underpin SANet activities:

- **§** Information only starting point: interaction of people is what makes a difference
- **§** Clear communication strategy and target group are instrumental for success
- **§** Technical solutions are only half the story viability is key across all sectors
- **§** Environment is not the primary driver of technology transfer, but contributions to economic goals

SANet helps business experts overcome technology transfer challenges by offering online resources and financial incentives, thereby enabling local experts to strengthen their advisory capacity and effectively market their services. Business experts can use SANet to find up-to-date information and tools that have practical value in assessing investment feasibility. Using SANet, specialized and experienced expertise can also be found. SANet acts as a broker of information and expertise for business experts in companies, consulting firms and financing institutions.

The SANet web site contains an array of knowledge and useful information resources designed to help business experts prepare financing decisions about cleaner technology transfers. The planning tools directory provides guided introductions to databases and interactive planning tools, most relevant to investment decision-making. The directory of case briefs helps experts generate ideas or crosscheck them with real-life business successes in which cleaner technologies were used profitably. The case directory is linked to the expert directory, which offers a database of experts with track records in bringing clean technology investments to success, both in terms of economy and environment. In addition, the finance directory, which will exhibit mechanisms of various financial institutions, is being planned. 0423364.37D24F83245839757498.75378 TD24683.75 498.75Tc -0.41.5 0

- Where appropriate and feasible, provide support to the development of private consultancy capacity to implement intermediary functions in EST transfer in the forest sector.
- Enhance the capacity of public intermediaries relevant to EST transfer in the forest sector by providing them with training and financial assistance; if possible, provide them with access to a financing facility; explore the possibility of introducing output-related incentives for staff in public intermediaries.
- Strengthen the capacity of the NGOs with respect to facilitation of EST transfer, and fully tap their capacity to contribute to the efforts carried out by the public sector.
- Develop the interface between international information networks and clearinghouses and country-level intermediaries to ensure that the existing information flow is in full use.

4.2.5 Consumer and Corporate Awareness

High awareness of environmental issues among consumers is a major driver for EST use in developed countries. In developing countries consumer awareness is often low, and it influences those mainly companies that export their products to environmentally sensitive markets. For instance, in Brazil the pulp and paper industries' environmental performance was found to be linked to pressure from customers demanding ISO 14001, forest certification and environmental labeling. This situation particularly characterized exporting companies selling environmentally friendly products (chlorine free paper) primarily in Europe. In addition, pressure on the image of a firm is important especially for multinational companies, which do not want to be seen as impacting negatively on the environment (e.g. Chudnovsky & Lopez 1999).

As regards natural forest management, buyers and consumers in importing countries have concerns related to legality and sustainability of tropical timber products. These concerns have led to the emergence of forest certification systems and independent auditing of legal compliance. Developing countries have perceived these demands as yet another hurdle to their market access, which should be discussed in the context of non-tariff barriers to trade. Unilateral measures to restrict tropical timber use for these reasons are another area of concern. It appears that these requirements (legality and sustainability) are gradually becoming baseline requirements in public procurement, driving the demand of ESTs in logging as well as management and information systems.

In general, corporate awareness is on the rise and it is obviously not limited to concerns about the world's forests. For instance, the World Business Council for Sustainable Development (WBCSD) representing major industry groups has announced plans to promote development and expansion of new markets for innovative climate-friendly technologies, in particular, by providing a mechanism for companies in developing countries to acquire new ESTs (IETC undated).

The overall impact of consumer awareness on the forest sector in developing countries is, however, quite limited and largely confined to key exporting countries. Only a minor portion of roundwood or processed timber traded in developing countries goes to environmentally sensitive markets, and the certified forest area in developing countries is still modest. Increasing globalization in the forest product markets will create increasing incentives for firms in developing countries to adopt SFM innovations, leading to derived demand for ESTs. The certification improvement to achieve SFM. The learning process that is achieved through certification is especially effective in transferring technologies to small and medium enterprises (Vertinsky & Vertinsky 1998).

The pressure to improve corporate environmental performance is real, and the companies need tools to demonstrate that they act responsibly and in an environmentally sustainable manner. Establishment of environmental management systems as one of the tools toward SFM is desirable because their adoption entails an indirect, but significant incentive for EST transfer. Independent verification of performance and related communication, including on-product labeling, can provide market advantage for creating demand for ESTs.

Recommended actions:
The existence of quality and environmental standards is an essential element in the dissemination of ESTs. The objective of EST transfer is to provide an environmental benefit, and, in order to verify this benefit, it has to be measured. Standards provide a common framework, which makes it possible to measure and demonstrate the positive impact of ESTs (STOA 2001).

The International Standards Organization (ISO) has prepared a number of standards related to several sectors of economic activity. Two series of standards have special importance for ESTs: (i) the ISO 14000 series, which relates specifically to the environment;

elements of SFM (CICI 2003). The C&I, which are applicable at the forest management unit (FMU) level can be used for assessment of ESTs and their impacts. C&Is have a comprehensive scope which renders them somewhat cumbersome in assessing the impact of individual ESTs, but a sub-set of full C&I may be used to overcome this problem. On the other hand, the benefit of a comprehensive framework is that it enables a systematic assessment, and draws attention not only to direct impacts but also to indirect ones, which may easily be overlooked (e.g. social effects). Development of appropriate monitoring systems is an integral part of C&I development.

Both ISO standards and the C&I for SFM list indicators but they do not define performance requirements. Such requirements are set in forest certification standards such as those of the Forest Stewardship Council (FSC) and the Pan-European Forest Certification (PEFC). As noted earlier, these standards have proven controversial because developing countries have expressed concerns that they may constitute barriers to trade. This issue can be overcome if forest management standards are developed within relevant regional or international nationally C&I frameworks for SFM. As some type of environmental (and social) standards are necessary to enable measurement of the impact of ESTs, forest industries and forest managers, including timber companies, state forest enterprises, communities and forest owners should be supported in adopting such standards.

It is also necessary to develop technology performance benchmarks to enable assessment of the impact of individual technologies. This is particularly relevant for ESTs in forest industries. For instance, the findings of a study on waste reduction in industrial sectors in Asia, including pulp and paper, showed that the benefits of cleaner production were difficult to measure (cited in Llanto 2000). The availability of benchmark information would be a significant advantage for efforts to market ESTs as it would dissipate much of the uncertainty surrounding EST investments. Risk aversion has been found to be a major barrier to adoption of ESTs in forest industries (Thiruchelvam *et al.* 2003).

Recommended actions:

•

with factors affecting the international availability of ESTs, and as well as domestic barriers.

Needs are highly location and context-specific, and it is often difficult to develop "products" that could be transferred from one developing country location to another without major modifications. In addition, the public sector organizations do not have an incentive to transfer them to developing countries.

Providing financial support to implement the necessary modifications and the actual transfer may be sufficient in a simple transfer from one government organization to another. However, if

5 TD321311544.9657 0.75 ansn addis; ion, ri2jic sTshat copreranbley nvolvso art

- Explore and tap funding opportunities for EST development arising under international conventions.
- Encourage dissemination of forest-related ESTs in the public domain.
- Provide support to adjusting ESTs to developing country conditions and promote the involvement of the private sector in their development and distribution.

4.3.2

would benefit from technical assistance and financial support from the international community.

Intellectual property rights are a particularly important issue in the context of technology transfer. Two differing views on the impact of IPR protection have been put forward: (i) strict protection of IPR provides incentives for technology transfer as well as for the growth of local R&D capacities, and (ii) relaxing IPR protection encourages dissemination (transfer) of existing technology since developing countries and their companies have limited resources to purchase licenses. The great majority of patents is owned and continues to be generated by the industrialized world. Not surprisingly, their governments and companies tend to be proponents of strong IPR protection. Developing country governments often hold the opposite view. For instance, in the discussions under the r

traditional forest-related knowledge could also be subject to IPRs (Box 2).

Recommended actions:

- Remove trade barriers to increase the flow of ESTs.
- Provide support to EST producers in developing companies to enable them to survive and benefit from opportunities provided by easier market access.
- Ensure that WTO regulations on IPRs enable appropriate benefit sharing (e.g., when forest-related resources from developing countries are used as a basis for IPR-protected innovations in biotechnology).

Box 2. Intellectual Property Rights with Respect to Traditional Medicines: Case Study in Zimbabwe

In 1995, the University of Zimbabwe, in partnership with the Swiss University of Lausanne, undertook a study of Zimbabwe's medicinal and poisonous plants. The two academic institutions signed an agreement that any commercial success resulting from the project would be shared. Samples of many different plants could be supplied to the project, including the bark of the *Swartzia* tree used by traditional healers.

The research scientists at the University of Lausanne discovered that *Swartzia* bark contains one of the world's most powerful anti-fungal agents. Used as a medicine, it can cure yeast and microbial infections. It was anticipated that *Swartzia* bark would have a potential for huge commercial success.

However, a legal wrangle between the universities ensued. According to the scientists from the University of Zimbabwe, the University of Lausanne took out a sole patent on the substance, and sold the license for further development and manufacture to a US drugs company. The Lausanne University maintains that the University of Zimbabwe was fully informed of the deal which allowed for 0.75% of net sales to go to each university in the event of a commercial success. The University of Zimbabwe claims that the Swiss university broke the agreement by registering the patent alone and not jointly. They settled their differences by re-filing for a joint patent but the research into commercializing *Swartzia* bark compounds was eventually halted due to toxicity problems (TVE 2003).

It has been pointed out that the traditional healers were not part of this agreement. However, in another case their rights have been recognized. The University of Lausanne has reportedly patented an anti-malarial derived from a plant indigenous to Southern Africa. The plant was submitted by the healers to the University of Zimbabwe, which later passed this to Lausanne. To give due credit to the healers, the Zimbabwe National Traditional Healers Association has been given the right to share any future profits from this drug (TIFAC 2001).

4.3.3 Domestic Supply of ESTs

The issues related to the diffusion of ESTs within developing countries have drawn much less attention than barriers to EST transfer at the international level. However, domestic impediments are often a serious handicap and reduce the effectiveness of EST transfer.

In part, the same barriers impeding the international transfer of ESTs constrain domestic diffusion. These include weaknesses in the macroeconomic framework, the high initial cost of EST investments, lack of information, etc. One barrier that often is specific to domestic markets in developing countries is the poor functioning of the market mechanism. The markets are often small in size and the number of players is limited. Combined with lack of appropriate regulation, this situation easily leads to the emergence

of monopolistic or oligopolistic structures, which can be a serious hindrance to the supply of ESTs.

There is a tendency for individual companies to restrict the spread of ESTs, rather than to promote it. Companies usually acquire ESTs to gain a competitive edge and are unwilling to share their experience with others. Thus, while FDI is an effective mechanism for bringing ESTs to developing countries, it may have a limited impact in terms of distributing the ESTs within the country. In particular, the demonstration effect from successful use of ESTs may not be achieved. Still, any EST transfer will eventually lead to information "trickling-down" to other players in the sector through

because individual projects tend to be of a small unit size and are considered to be of high risk offering returns mainly in the long term, they are extremely difficult to finance (STOA 2001).

Efforts to develop financing for EST transfer are focused on increasing the flow both on the supply and demand side and developing efficient delivery mechanisms. However, while these are necessary measures, they may constitute too narrow an approach. Financing should not focus only on increasing the funding volumes, but also on how the existing flows can be made to work in support of sustainability objectives. There is not an automatic connection between increased financing and increased transfer of ESTs.

4.4.1 ODA

The overall amount of public funds for developing countries has fluctuated substantially in recent years. While the volume of bilateral grants has remained steady around USD 30 billion per year, the credits from official sources (WB, IMF, etc.) have oscillated in the wake of financial crises in Asia and Latin America. Compared to the private sector, the public flows are clearly more limited. From 1997 to 2003, the private sector flows were 3 to 8 times higher than those from the public sector. However, public sector flows are still significant for the economies of the poorest developing countries. In regional terms, the Middle East and North Africa, South Asia and Sub-Saharan Africa show the highest dependence on public sector flows (World Bank 2003).

The amount of ODA to forestry rose until the 1980s but has since then fallen modestly; the current amount is around USD 0.5 billion per year, which accounts for about 1% of total ODA. About twothirds of the estimated total goes to afforestation projects, with the remainder spent on policy, administration, research, training and fuelwood and charcoal projects. Official loan funding to forestry is quite limited. Bilateral donors provide very few credits to the

Owing to limited private sector involvement, most cooperation has taken place between go vernmental organizations in developing and developed between countries. government and forestrv organizations in developing countries and bilateral and multilateral organizations in developed countries. Privatization programs, increased use of concession contracts, etc. have already started to increase the role of the private sector and may represent an untapped opportunity to use ODA support for promoting EST transfer in the forest sector. EST criteria could be incorporated in various stages of these delivery processes, but the governments are generally unfamiliar with such procedures.

As a special use of ODA, developing countries have demanded that developed countries purchase patents and licenses on commercial terms for transfer to developing countries on noncommercial terms for sustainable development. These countries have also suggested that special fiscal and other incentives should be created to encourage the transfer of privately owned ESTs from developed countries. The justification for these measures would be based on the MEA commitments made both by developed and developing countries (Hoffman 1999).

The principal problems with these measures are that (i) it is difficult to target them at ESTs, and (ii) desired impacts may not be reached if a proper enabling environment is not in place. The definition of EST is still vague and, potentially, all technologies could qualify somehow. However, an adequate definition could probably be developed by excluding technologies that have an environmental impact only through increased productivity. Only the ones that are preventive, corrective and mitigating, etc. in addressing negative environmental impacts would be included in the definition. Examples of these technologies include pollution prevention and waste reduction technologies in forest industries.

Regarding the enabling environment, there may be minimum preconditions that have to be fulfilled for the EST transfer to be successful, but it does not mean that the environment has to be flawless. EST transfer can accelerate development in a satisfactory manner even if some of the barriers remain. Introduction of targeted financial incentives could be considered justified, if the impact from EST transfer is likely to be significant and sustainable. General incentives are, however, likely to be inefficient and very costly and would have to be analyzed carefully on a case-by-case basis to avoid distortions. It is probable that most of the opportunities would arise in forest industries, where the business environment is "simpler" and more supportive than in forestry.

Recommended actions:

• Identify opportunities for EST transfer as part of broader

4.4.2 Commercial Lending and Incentives

Large corporations in developing countries have usually satisfactory access to investment funding either locally or internationally, and capital availability is not necessarily a major constraint for EST investments. In contrast, reaching to SMEs is one of the main challenges for efforts to promote EST transfer. The small size of SMEs and their isolated nature makes influencing their behavior difficult, particularly with regard to technology investment.

The major concern of SMEs is their emphasis on short-term financial profitability, which for the majority of ESTs is not attractive, because the benefits tend to accrue over a long period of time. There are, however, a large number of ESTs that can be implemented at low or no cost. For example, a project assessing clean production options for a medium-sized Chinese paper mill identified 38 options, of which 22 were no or low-cost options (ICPIC 1997). In such cases the constraint is much less financing than unawareness of ESTs, and the problem could be best addressed by information dissemination or by establishing appropriate advisory services.

Enhancing SMEs' access to funding is a broad topic not specific to the forest sector or not necessarily even for EST transfer. In theory, it is possible to incorporate EST criteria in loans, leases, etc. funded by multilateral development banks. To the extent they are disbursed through local banks, the capacity constraints and the cost of screening projects for their potential for EST transfer may reduce the feasibility of this option.

At the macro level, there are both financial instruments (e.g. grants and direct subsidies) and fiscal measures (tax allowances or tax incentives) that could be used to improve SMEs' access to financing with regard to EST investments. For instance, in Thailand there are financial incentives for energy conservationrelated technology transfer. Capital financing is provided to eligible projects as well as subsidies, if the rate of return is below commercial standards. However, such measures can be expensive and bureaucratic and their use should be carefully controlled, preferably only to "kick-start" EST markets (cf. CSD 1996). It is also difficult to target such measures on single sectors such as forestry. Targeting could be possible, were the provision coupled with an advisory component.

Recommended action:

- Explore the possibility to include EST-related conditions on loans given to SMEs or to apply fiscal or financial incentives to EST investments.
- Promote the involvement of financial specialists with special knowledge on forest-related ESTs in advisory bodies for SMEs and financing institutions responsible for delivery of financing to SMEs.

4.4.3 Micro and Mini Finance

A few ESTs in the forest sector, such as improved charcoal kilns and stoves, are targeting individual producers or consumers in developing countries. The conventional financing instruments are usually inaccessible to them and the small size of investments makes them also uninteresting to commercial banks. However, there are successful micro-financing initiatives that are available to poor people, such as the Grameen Bank, and purchase of simple, low-cost ESTs would fall within their scope. The development of these schemes would probably be conducive to increased uptake of ESTs as long as transaction costs related to the promotion of EST transfer are not excessive. Efforts to promote small-scale ESTs in the forest sector should concentrate on product development.

Recommended action:

• Co

since the amount of financing to make them economically viable is substantial. For instance, the idea of establishing a global Investment Promotion Entity (IPE) for sustainable forest management has been discussed, but the main hurdle is to raise the necessary amount of seed capital (Chipeta & Joshi 2001; Salmi *et al.* 2001).

On the other hand, forestry investments qualify under several funds that have a broader scope. The main opportunity in the forest sector is the Clean Development Mechanism (CDM) under the Kyoto Protocol (Box 3). The CDM is essentially a market mechanism and offers opportunities mainly for the private sector with the facilitation of the public sector. In the forest sector, funding will be available for reforestation and afforestation. The CDM does not target ESTs *per se*, but there are special provisions to encourage their transfer. Facilitation by the public sector could also contribute to this end. There are already several such funds, including the Prototype Carbon Fund, Community Development Carbon Funds, the Biocarbon Fund, CERUPT, and ERU-PT. The first three funds are managed by the World Bank and the last two ones by a Dutch government organization. These funds also act as intermediaries.

Box 3. Clean Development Mechanism as Funding Source for Forest-related ESTs

The Kyoto Protocol was conceived in 1997, whereby 37 developed countries and economies in transition made binding commitments to reduce their GHG emissions. The Protocol approves the use of three "flexibility mechanisms" for facilitating the achievement of these GHG emission reduction targets. Of these, the Clean Development Mechanism (CDM) allows for the creation of Certified Emission Reduction (CER) credits in developing countries.

CDM is considered to be of particular importance for the diffusion of ESTs in developing countries. The advantages of the CDM include:

- Favoring the diffusion of ESTs in developing countries, which do not wish to subscribe to national targets on GHG emissions

estimates that the African countries' share of CDM markets will be only about 3% (Davidson 2001).

Intermediaries

Publicly funded intermediaries for EST transfer are another important category of partnership. They aim to help in the development of projects oriented towards transferring ESTs by providing pre-investment support such as funding feasibility studies, finding partners and preparing bankable proposals to mobilize private capital, as well as matching potential buyers with sellers.

Regarding financing, the intermediaries have basically two strategies (i) to find financing for selected environmental problems, and (ii) to identify (a) a pool of potential financiers, and (b) projects in a selected sphere that meet the financiers' investment criteria (CSD 1996). Both of these approaches could be relevant in the forest sector. However, it may be difficult to reach a mass of business opportunities, if the "critical" advisors concentrate on one single sector such as forestry. Depending on the importance of various funding sources, it may be advisable to pool resources either cross-sectorally or across several countries regionally. This would be more attractive from the financiers' point of view, who would have access to a larger business volume. Especially in the latter case, the international community could provide focused assistance to the forest sector and ESTs.

Technology partnerships

Technology partnership programs are another form of cooperation between the private and public sectors. It involves collaboration among government agencies and institutions, the private sector and science and technology institutions. They are typically mutually beneficial long-term arrangements involving capacity-building and aiming to stimulate the development, transfer and dissemination of ESTs. The arrangement is highly suitable for the forest sector as well. The main hurdle is the weakness of public science and research institutions in developing countries, weakening the basis for mutually beneficial relationships.

Recommended actions:

- Collaborate with the private sector to ensure that the full potential of instruments such as CDM to support EST transfer in the forest sector will be effectively used.
- Ensure that public sector intermediaries for enhancing financing to the private sector will contribute to EST transfer in the forest sector; the possibility to establish regional intermediaries targeting specifically the forest sector and ESTs should be explored.
- Where feasible, provide technical and financial support to the establishment of technology partnership programs between public and private sector entities in the forest sector; and strengthen the capacity of public entities to contribute to such partnerships.

4.4.5 Inflow of Private Investment Funds

Foreign Direct Investment (FDI) is a major source of financing for capital investment. According to the World Bank in 2003, the private sector is expected to provide a net funding of USD 158 billion to developing countries. Of this, nearly 90% is FDI, the rest being portfolio equity flows. In general, FDI is placed very

selectively, and it is typical that even within one region there is large variation between individual countries. In East Asia and the Pacific, China receives over 90% of the entire FDI inflow, and in Latin America and the Caribbean, Brazil and Mexico together account for more than 70%. Overall, these three countries received 58% of all FDI in developing countries in 2002. In contrast, the whole Sub-Saharan Africa was able to attract only 5% of the total (World Bank 2003).

The amount of FDI in the forestry sector is not known. It is probable that most of it is recorded under industrial projects including forestry components (e.g. timber harvesting, plantation establishment). Global estimates on FDI in forest industries are unavailable, but it was estimated that in 1998 the combined FDI of the US and Finnish forest industries reached USD 30 billion (Uusivuori & Laaksonen-Craig 2001). Only part of these investments were made in developing countries, but the order of magnitude indicates that FDI represents a much larger source of funds than ODA or official loan funding. It is apparent that also in the forest sector the FDI flows are highly concentrated in few selected countries. Also, the portion going to forestry is probably quite small with capital investments in wood processing taking the lion's share. High capital-intensive pulp and paper industries especially benefit from FDI.

There have been concerns that FDI and multinational corporations (MNCs) would take advantage of lower environmental standards and their lax enforcement in developing countries. However, while not all FDI brings along environmentally responsible practices, there is increasing evidence that foreign-owned or joint ventures tend to have higher environmental standards than local firms. One reason is that they use the usually higher standards and technology adopted by the overseas parent company. Another

certification could be introduced as a control instrument. It may also be possible to collaborate with other government agencies to make FDI conditional on the use of environmentally friendly technologies.

Joint ventures and private equity from strategic investors are a particular type of FDI. Investors are often large multinational corporations and the conditions that attract them are largely the same as for any other FDI. The benefit of joint ventures over direct FDI is that capacity building and technology diffusion in the host country can be more effective. The Global Environmental Fund is an example of an equity fund making private equity investments in environmentally companies contributing to sustainable development. Sustainable forestry and forest products is one of the identified areas of investment, and the fund has acquired a stake in a forest product company in South Africa (Global Environmental Fund 2003).

The main weakness of these types of arrangements is that they target only the largest developing country corporations; SMEs are rarely involved in these schemes. Venture capitalists are more willing to provide funding for SMEs, but they tend to prioritize "new" sectors (e.g. ICT and biotechnology) with high expectations on return. The perception that forestry and environmental ventures yield low profits has discouraged their interest. A study of 60 international venture capitalists showed that a high proportion of them were skeptical about the relevanc 0 -1al Environmenta TD 0Tw1T5 Tw 0Tw10 Theigdu 2003)

Recommended actions:

Recommended action:

• /q3.5

PART III: ENVIRONMENTALLY SOUND TECHNOLOGIES IN PRACTICE

5. SELECTED ENVIRONMENTALLY SOUND TECHNOLOGIES

5.1 Reduced impact logging in tropical forests

Technology

The term reduced impact logging (RIL) refers mainly to harvesting in tropical countries, but many of these practices were developed in temperate countries, where they are widely applied. RIL is largely a "soft" technology that consists mainly of planning, engineering and operating practices; some elements of "hard" technology are also involved.

Although it varies somewhat with the local situation, RIL in tropical forests generally requires the following (Dykstra 2001):

- pre-harvest inventory and mapping of individual crop trees;
- pre-harvest planning of roads, skid trails and landings to provide access to the harvest area and to the individual trees scheduled for harvest, while minimizing soil disturbance and protecting streams and waterways with appropriate crossings;
- pre-harvest vine-cutting in areas where heavy vines connect tree crowns;
- construction of roads, landings and skid trails so that they adhere to engineering and environmental design guidelines;
- the use of appropriate felling and bucking techniques including directional felling, cutting stumps low to the ground to avoid

waste, and optimal crosscutting of tree stems into logs in a way that maximizes the recovery of useful wood;

• the winching of logs to planned skid trails and ensuring that heavy skidding machines remain on the trails at all times;

- On average, RIL results in 41% less damage to residual stands when compared with conventional logging systems.
- The area covered by skid trails in RIL operations is almost 50% less than in conventional logging.
- The area damaged by road construction is about 40% less with RIL than with conventional logging.
- Overall site damage (compaction, exposure of soil, etc.) in RIL operations is generally less than half that in conventional logging.
- Canopy opening is generally about one-third less in RIL compared with conventional harvesting practices (16% versus 25%).
- The volume of lost timber (i.e. merchantable logs that have been prepared for extraction but not found by skidder operators) is reduced by more than a third in RIL operations.
- Logging costs are reduced thanks to more detailed planning of operations.

Barriers

Despite considerable efforts to promote RIL, it is still practiced by a small number of logging operators. Major barriers to its widespread adoption include (Durst and Enters 2001):

• The high relative costs of implementing RIL is a key deterrent for commercial operators; while sustainable timber production applying RIL can produce acceptable financial returns, unsustainable practices are even more profitable at least over

- Lack of awareness and appreciation of the benefits of RIL at decision-making levels in governments and corporations.
- Lack of security of tenure; since many financial benefits of RIL are only realized at the time of future harvests, forest managers have little incentive to log forests carefully if they anticipate that the forest will be occupied, taken over, or damaged by others.
- One of the key barriers is lack of trained and experienced

Inadequate government policies and incentives to practice will; while laws and regulations are often adequate, their lax enforcement eliminates incentives to practice RIL.c 0 fpTj 29.65cu8ns and diverse; the following list provides selected examples of technologies in use: (e.g., GIS applications 2003).

Remote sensing

Mapping and monitoring of changes of

- Forest (stand) characteristics (volume, biomass, carbon sequestration, species composition, growth, vegetation site, basal area etc.)
- Potential threats to forest (deforestation, forest degradation, desertification, fragmentation, spread of invasive species)
- Forest damage (fire, pest and disease infestation, wind damage, pollution);
- Wildlife resources
- Grazing pressure, shifting cultivation, end clearing for agriculture
- Logging impact
- Extent of road network
- Extent and location of illegal logging

GIS applications (often in combination with remote sensing)

- Land use and ecological landscape planning
- Forest management planning (strategic and operational)
- P.25 TD ation of illegal logging
 - Potential threats to forest (deforestation, forest degradation, Forest 12/F combinatio0.33sD /F4 12 Tf 0 Tc -0.336 on with -0.3

-

protection and wildlife corridors, ecological landscape planning)

- Planning of wilderness areas (e.g., development of recreational trails)
- Estimating recreation value and tourism potential
- Predicting evapotranspiration and runoff; and
- Supporting the resolution of forestry/wildlife conflicts

Tropical countries use remote sensing widely for forest resource assessment. GIS has principally been used for research and only to a limited extent to formally support policy formulation, the planning process or management decisions (Apan 2000). In contrast, in developed countries GIS applications are routinely used as an operational decision-making aid, suggesting that the potential for transfer of GIS technology to developing countries is substantial.

Environmental Effects

The benefits of remote sensing and GIS are often obvious but difficult to assess in quantitative terms. General benefits include, *inter alia*, increases in productivity, cost reduction, information security, improved decision-making, improved customer service, improved modeling and planning, etc. The fact that most commercial timber companies in developing countries are applying at least GIS is a strong indicator of their usefulness.

The benefits specific to environmental management include, *inter alia*, better monitoring of forest conditions, easier distribution of environmental data, improved coordination of productive and conservation activities, and enhanced capacity to analyze the environmental impacts of alternative courses of action.

Barriers

GIS and remote sensing have been substantially promoted in developing countries, but the results have been rather mixed. The available evaluations show that apart from the well-known problems with capacity and human resources, institutional and organizational constraints constitute a significant hindrance. There is also a considerable under-utilization of the existing data. The identified impediments in developing countries include the following (cf. Eastman & Toledano 1996, de Gier *et al.* 1999):

- restricted access for policy-makers and practitioners to existing data owing to
 - inadequate data distribution mechanisms,
 - lack of structures for decentralized data management,
 - restrictions on free access to information for strategic, political, economic or other reasons,
 - lack of international/national data standards rendering data sets incompatible,
 - lack of mechanisms/protocols to integrate and share datapojitikar, at

for timber companies (e.g. valuable tree species cannot be identified separately);

- lack of raw data to input to the GIS, and lack of "digitized" infrastructure (e.g., digitized road maps in support of transport applications);
- lack of technical skills to operate and manage GIS as well as to conceptualize and independently manage GIS development projects;
- lack of adequately equipped and staffed training institutions; and
- restricted capacity to support remotely located units (in-house & commercial services) making it difficult to reach the "critical mass" of data users.

5.3 Bioenergy

Biomass contributes significantly to the world's energy supply, accounting for about 9 to 13% of the total. It is particularly

10
- (b) Domestic biomass-fired heating systems (in Nordic countries, Austria, Germany)
- (2) Heat and electricity production
 - (a) Combustion
 - (b) Combined heat and power (CHP) (e.g., in sawmill factories)
 - (c) Standalone
 - (d) Co-combustion (e.g., natural gas and coal with biomass)
 - (e) Gasification
 - (f) Combined heat and power (CHP) (diesel or gas turbines)
 - (g) Biomass integrated gasification/combined cycle (BIG/CC)
 - (h) Digestion
- (3) Fuel production
 - (a) Pyrolysis (bio-oil, charcoal production)
 - (b) Hydrothermal upgrading (biocrude)
 - (c) Fermentation (ethanol)
 - (d) Hydrolysis (ethanol, possibly electricity)
 - (e) Gasification (methanol, hydrogen, electricity)
 - (f) Syngas conversion processes (methanol, hydrogen)

"Traditional" technologies for using fuelwood in cooking and domestic heating or in small-scale industries (bakeries, brick-making, etc.) are still the most prevalent ones in developing countries. It is estimated that "traditional" technologies use 7 to 8 times more energy than "modern" ones (FAO 1998). Many of the latter are still in an experimental stage, but the following technological options appear to hold most promise for expansion and commercialization (Turkenburg *et al.* 2000, FAO 1998):

• direct combustion of various types of biomass to produce heat, steam or electricity (CHP, dendrothermal power plants, co-combustion etc.);

- gasification of biomass for electricity generation, using technologies such as BIG/CC;
- production of liquid fuels (alcohol, ethanol, methanol, etc.) using hydrolysis and gasification.

Scenarios for the potential of all renewable energy sources indicate that they could contribute 20 to 50% of energy supplies in the second half of the 21^{st} century (Turkenburg *et al.* 2000).

Environmental Effects

• Use of pesticides can have negative effects, but experience with wood crops (e.g. poplar, eucalyptus) indicate that strict environmental standards can be met.

- Biomass energy projects suffer from not having a level playing field in competition with conventional energy sources (i.e. tax policies, power-purchase agreements, etc. often favor conventional energy projects).
- Bioenergy production requiring large land areas may not be able to compete with alternative land uses in densely populated areas, where the demand for land is high.
- Biomass-based energy projects may have competition for their fuel source from higher-value applications such as the furniture industry, especially in the case of wood.
- Available biomass energy technologies do not offer sufficiently high returns or they may not be sufficiently mature to represent an acceptable risk to private-sector investors.

Besides these, there are also institutional constraints, which vary from country to country and over time, depending on prevailing conditions. These can be summarized as follows (cf. FAO 1998):

- Current energy policies are often biased against renewable energy sources; energy prices do not reflect external social costs such as the effects of air pollution or GHG emissions.
- Taxes and subsidies often encourage fossil fuels, favoring operating costs over long-term investment.
- Cooperation between developers/researchers, manufacturers and potential users is not well coordinated.
- Technology transfer of mass products, e.g. improved stoves, is often too focused on fuel efficiency and direct cost; however, acceptance is strongly influenced by indirect costs and social factors, such as simplicity of operation and maintenance, availability of materials, cultural preferences and patterns, and the mechanisms to promote the new stoves.
- Market creation is often difficult; biomass producers may not be willing to plant energy crops unless they are assured of a

market for their output. At the same time, the power utilities may not be willing to build bioenergy power facilities unless they have assurances that fuel will be available.

• Widespread implementation of afforestation programs is often constrained by economic and social factors.

5.4 Pulp and paper production

The pulp and paper industry has been under substantial regulatory, social and market pressures to improve its environmental performance since the 1970s. These pressures were felt especially in the developed world where the industry responded by introducing new and improved technology. The environmental technologies adopted by the pulp and paper industries in the past three decades include the following (Mickwizt *et al.* 2003):

- increasing the dry content of black liquor,
- incineration of odorous gases (in recovery boiler, lime kiln or separate furnace),
- filters for air emissions,
- biological and tertiary waste water treatment (activated sludge treatment), and
- chorine-free bleaching.

Unfortunately, very few of these technologies were adopted in developing countries. In the mid-1990s, less than one quarter of the world's pulp and paper-making capacity (in Asia excluding Japan, Russia, Eastern Europe and all of Latin America) is responsible for about 75% of TSS (total suspended solids) emissions, and 49% and 38% of COD (chemical oxygen demand) and AOX (absorbable organo-halogens), respectively (IIED 1996).

At the same time technological development has made rapid progress in developed countries, shifting focus from traditional control and treatment technologies to pollution prevention at source. Some of the most recently adopted pollution prevention techniques applied at pulp and paper facilities in the United States include (EPA 2002):

- *extended delignification, oxygen delignification* and use of *anthraquinone catalysis* to reduce the need for bleaching chemicals;
- *ozone delignification* (ozone bleaching) to eliminate the need for chlorine in the bleaching process;
- *improved black liquor spill control and prevention;*
- *enzyme treatment of pulp* to decrease the use of chlorinated compounds and chemicals;
- *improved brownstock and bleaching stage washing* and *improved chipping and screening* to reduce use of bleaching chemicals and the associated chlorinated compounds as well as conventional pollutants;
- oxygen-reinforced extraction and peroxide-reinforced extraction processes to reduce the amount of elemental chlorine and chlorine dioxide needed in the bleaching process; and
- *improved chemical controls and mixing* to avoid the formation of chlorinated organics

The use of these technologies has expanded rapidly. For example, it is estimated that up to 80% of mills in the United States are currently using oxygen-reinforced extraction. The use of peroxide extraction is also increasing. As of 1987, it was estimated that only 25% of domestic mills were using peroxide extraction (EPA 2002).

Environmental Effects

The introduction of new environmental technologies has had a dramatic effect on pollution. For instance, owing largely to changes in bleaching techniques, the dioxin level of pulp and paper mill effluents in the United States decreased 90% between 1988 and 1993 and at the end of the period 90% of the mills produced unmeasurable levels of dioxin. A survey of Canadian pulp and paper industries in 1995 indicated that dioxin levels were non-detectable in all but one. On the other hand, during the same period only a few mills in Asia and Latin America and none in Africa had replaced their chlorine bleaching technologies (IIED 1996).

The recently introduced pollution prevention technologies hold substantial potential to improve the environmental performance of pulp and paper industries. To mention just one example, oxygen delignification can reduce the lignin content in the pulp by as much as 50%, resulting in a potentially similar reduction in the use of chlorinated bleaching chemicals and chlorinated compound pollutants (EPA 2002).

Barriers

Environmental investments in the pulp and paper sector typically require substantial capital inputs. Many of the barriers are therefore related to the weakness of the financing sector in general. Foreign direct investment (FDI), which is a major vehicle for technology transfer, may be constrained by an unfavorable economic environment. Typical problems in developing countries include the following.

- Capital availability from the banking sector is limited (cost of capital for domestic enterprises is generally in the range of up to 30-40%) owing to
 - high inflation rates and
 - an unstable and poorly capitalized banking sector.
- Inflow of foreign capital is hindered by
 - restrictive national trade and investment policies,
 - lack of sufficient infrastructure, and
 - risk of social and civil disruption.

Attracting FDI is constrained further, if the country in question (a) has small market size, (b) lacks skilled or well-trained human resources, and (c) has limited stock of natural resources of commercial interest.

Constraints specific to environmental investments in the pulp and paper sector in the developing countries include the following:

• Environmental investments have a high relative cost; it would be less expensive to build large greenfield m15 is hindered by

- Pulp and paper industries in developing countries are often focused on market expansion and perceive limited returns from environmental investments.
- Inadequate environmental legislation, low environmental standards, and lax enforcement reduce incentives to make environmental investments.
- Lack of consumer awareness limits market-based pressure to enhance environmental performance.
- There is a shortage of trained managers and technical personnel, as well as a lack of appropriate training institutions.
- Lack of publicly funded R&D effectively bars small and medium-sized firms from having access to any broader knowledge infrastructure that would facilitate technology adaptation and reduce adaptation cost.

The relevance of these factors varies over time and from one country to another.

5.5 Biotechnology

Over the last few decades, industrial plantation forests have become a major source of supply of industrial wood. One of the main reasons for this change is the improved economics of planted forests through technological innovations. The vehicles of change have been tree breeding and – more recently – biotechnology. The characteristics that these techniques have sought to improve include, *inter alia* (cf. Sedjo 2001),

- growth rates;
- disease and pest resistance;
- *climate range and adaptability*; tolerance to drought, cold, air and soil pollutants;

- *tree form and wood fiber quality:* straightness of the trunk, absence of large or excessive branching, amount of taper in the trunk, homogeneity of raw material; and
- *fiber characteristics that ease processing:* break-down of wood fibers in chemical processing, reduced pitch or lignin content of trees.

The foreseen benefits are substantial. As an example, improved fiber characteristics could potentially increase value added from pulping by 15 to 20%, and the benefit from reduced lignin content could be of the same order of magnitude. It is estimated that the introduction of a herbicide resistant gene in the seedlings could reduce the initial establishment cost of eucalyptus plantations by 40% (Sedjo 2001). However, biotechnology in forestry is still at an early stage of development. There has been no reported commercial production of transgenic forest trees, although 116 field trials in 17 countries and involving 24 tree species have been reported (Owusu, 1999).

The pulp and paper industry is also keen to take advantage of biotechnology to make the production process more efficient and environmentally friendly. A large number of experiments are underway, but applications that have successfully transferred to commercial production include the use of (Sykes *et al.* 1999)

- xylanases for bleach boosting,
- cellulases for improved drainage,
- lipases for pitch removal, and
- cellulase-hemicellulase mixture for de-inking.

These technologies are seen as cost-effective alternatives to complement rather than totally replace traditional technologies They were first introduced in Nordic and Canadian pulp and paper industries, later followed by industries in the United States (Sykes *et al.* 1999).

Environmental Effects

While the adoption of biotechnology in forestry appears to be driven mainly by hopes for economic gain, environmental benefits can be provided *parallel* to this pursuit. Most importantly, low-cost wood from plantations provides an alternative for wood from natural forests, and expanded production could substantially reduce pressure to harvest natural forests.

Additionally, biotechnology could be used to develop specific tree qualities that provide desired environmental services. For example, modified trees could survive and provide environmental services in conditions previously unsuitable for them. Arid and degraded lands or those in cold climates could benefit from erosion control and watershed services provided by trees. Biotechnology could be used to enhance capacity of trees for phytoremediation, i.e. cleaning up toxic waste sites. Biotechnology also provides the potential to restore species severely damaged by pests and disease, such as the American chestnut. Furthermore, the forests' ability to sequester carbon and other GHGs to mitigate the build-up of atmospheric green house gases could be enhanced through biotechnology (Sedjo 2001).

However, it is acknowledged that the biosafety aspects of genetically modified trees need careful consideration. One of the risks is that pollen from genetically engineered trees spreads to wild relatives, giving birth to invasive species. Another concern is that, because of the long generation time of trees, the full effects of biotechnology enhancement will not be known until a very late stage (Botkin 2001).

In the pulp and paper industry, biotechnology can be used to modify biologically based processes in a manner that produces more specific reactions and reduces environmentally harmful impacts. Biotechnology may also help in gaining energy savings, and in developing alternatives for non-biological processes (Sykes *et al.* 1999).

Barriers

The impediments to the transfer of biotechnology to the forest sector in developing countries include the following:

- Insufficient human and institutional capacities at all levels
 - Lack of modern institutions for technology development and adaptation
 - Inadequate training capacity
 - Unawareness and lack of experience among policy makers for developing an appropriate policy and regulatory environment
 - Inefficient and inexperienced public institutions to regulate and promote biotechnology
 - Lack of technical knowledge in the enterprise sector
- High initial cost of biotechnology development and adoption; poorly developed networks and public-private partnerships able to pool resources (financing and knowledge)
- Poorly formulated or enforced legal framework concerning intellectual property rights discouraging technology transfer from abroad as well as private sector involvement in R&D

- High front-end costs of investments based on biotechnology and lack of access to investment capital among industrial companies and forest owners
- Inadequate or poorly enforced environmental regulations, resulting in a disincentive for the business sector to make investments in biotechnology that only provides environmental benefits
- Public policies that accord low priority for environmental investments not yielding parallel productive gains
- Public opinion concerned about negative environmental impacts of biotechnology, aggravated by inadequate policy and legal frameworks for biosafety

6. CASE STUDY: TRANSFER OF ENVIRONMENTALLY SOUND TECHNOLOGIES FOR MANGROVE FORESTS

6.1 The state of the world's mangrove forests

Mangroves are tidal forests that have important functions as natural sea defenses, nurseries for fisheries, and habitats for biodiversity. Global climate change and the associated risks of sea level rise and extreme weather events have further underlined the importance of mangroves as a buffer protecting coastlines in the tropics and sub-tropics. Unfortunately, the catastrophic effects of the destruction of these important forest ecosystems have been Mangrove forest are restricted mainly to the tropics (b

permanent destruction of mangrove forests (Lacerda et al. 2000). The negative effects of all these activities have been documented in virtually all countries having major mangrove forests. A few examples are provided below.

Mangrove forests are directly harvested mainly for fuelwood especially for charcoal making, in particular along the coasts of Southeast Asia, and Central and South America. Although timber production from mangrove forests continue to be minor in comparison to that from other types of forests, in a local scale it has been and remains to be important to local communities for house and boat building (mainly in South and Southeast Asia). Mangrove forests are heavily exploited for, *inter alia*, firewood (West Africa, Latin America), fishing stakes/poles (Southeast Asia, Central America), wood chips and pulp (Bangladesh, Indonesia, Malaysia), and tannin (South and Southeast Asia, Latin America).

Particularly in Asia, large extensions of mangrove forests have been cleared for agriculture purposes (e.g., rice farming, coconut, oil palm). However, aquaculture expansion has played a major role in the destruction of mangrove forests all over the tropics and the conversion of mangrove areas into shrimp ponds represents one of the major threats to mangroves in many countries. An estimated 3 million hectares of mangrove forests in Southeast Asia (particular in Bangladesh, the Philippines, Vietnam, Thailand, Japan and the Mekong basin) have been destroyed mainly by aquaculture-related activities (UNEP 2000). It has been estimated that, to date, approximately 1-1.5 million hectares of coastal lowlands worldwide (comprising mainly salt flats, mangrove areas, marshes and agricultural lands) have been converted into shrimp ponds (Paez-Osuna 2001).

Poorly planned coastal urban and industrial development has changed and reduced areas previously covered by wetlands and mangroves all over the tropics and represent the single main threat to mangrove forests worldwide. The construction of harbors, tourism facilities, urban and industrial development, airports and power plants without proper planning and environmental impact assessment have destroyed extensive areas of mangrove forests. Also, deforestation, coastal erosion, increasing saline intrusion, nutrient depletion and sediment accretion caused by damming and diversion of rivers have a significant impact on mangrove forests and their resources (Lacerda and Marins 2002. Botero and Salzwedel 1999). Rivers are diverted for various purposes, such as preventing flooding of urban, agricultural and livestock-used lands, for irrigation purposes. Pollution from and untreated or inappropriately treated discharges of domestic and industrial wastewater, and chemicals used in agriculture not only affect mangroves but also threaten the health of coastal human populations. On the other hand, the construction and use of boardwalks (used in mangrove management since they are thought solve problems of access by people while promoting to recreational and educational opportunities) and the people using them may have negative impacts on the mangrove ecosystem (Kelaher et al. 1988).

The negative effects of human activities on the coastal environment primarily stem from two sources (GESAMP and ACOPS 2001): *poverty* (frequently associated with excessive population pressure on natural resources) and the negative effects of *economic and social change* (these changes increase the demand for scarce natural resources, while consumption patterns in industrialized countries add pressure to natural resources in less developed countries). Institutional failure allows these factors to have a much more powerful effect, particularly when governments are unwilling or unable to correct the market failures that occur when markets do not fully reflect the value of the resources. This is particularly true for mangrove forests (see below). Allocating resources through the establishment of property and use rights is thus fundamental to overcoming market failures.

The need that coastal developing countries have for generating urgently economic revenues has led to an increase in activities/practices that negatively impact coastal ecosystems, including mangroves, but which also have serious socio-economic implications for local human populations in particular (GESAMP and ACOPS 2001). Increased internal human migration to the coast, coastal development, urbanization, tourism, aquaculture,

level, are also critical to ensure the sustainable management of mangrove forest products and services. In many countries it is still not clear under which government department, ministry or institution mangrove forests are ha management decisions. Satellite imagery is a cost-effective technique. It provides access to synoptic and up-to-date information for the mapping, illustration and modeling of natural and human-induced events (e.g., regular felling, illicit felling, forest fires, reforestation and regeneration). GIS can be used to monitor the impacts of deforestation, and to plan the timing and type of timber management practices based on information on soil types, species requirements, growth and yield.

Compared with information acquired by traditional methods, data obtained from remote sensing offer a number of advantages, including: (i) satellite imagery can cover vast expanses of land (thousands to tens of thousands of km² on one image) and it can be acquired regularly over the same area and recorded in different wavelengths, thus tracking the state of forest resources; and (ii) satellite data can be acquired without encountering administrative restrictions. GIS provides a means of converting spatial data into digital form that can then be displayed, manipulated, modified and analyzed and reproduced quickly in a new format, available for either visual display or hard copy reproduction. Conventional (paper) maps, in contrast, are time-consuming to prepare manually, and the display and analysis of changed data or the comparison of more than one set of map data (e.g., soil and vegetation) requires additional manual labour. The digital data can also be easily transmitted from one user to another or from one GIS to another merely on disk, tape or by the Internet. As digital maps come into wider use, many users can share the cost of digitizing. In fact, some digitized maps on CD-ROMs cost less than the same maps on paper. As networks and libraries of databases grow, information exchange should reduce the need for redigitizing regional or national maps and other geographic databases than are in common use.

In summary, remote sensing and GIS-based forestry studies can generate results that can be directly used in forest management planning (Dahgouh-Guebas, undated). Applicable findings (when focusing on vegetation layers of different age) can for instance include the prediction of future changes in mangrove forests. In addition, combination of these data with local and global ecosystem data (e.g., biological, hydrological, physicochemical, geographical), socio-economic or socio-geographical data allows to assess future changes under different scenarios (e.g., exploitation, conversion, natural catastrophes, sea level rise) and to adopt conservation strategies by interfering appropriately.

Given that it is widely recognized that the natural regeneration of mangrove forests should be the first choice of any rehabilitation program unless there is irrefutable evidence that it will be unsuccessful (Field 1996), the understanding of mangrove vegetation structure dynamics in a particular area is a prerequisite to the development and successful implementation of conservation and management measures, such as the establishment, protection and management of re-afforestation plots in the framework of regeneration projects. There is a need for a methodology that allows to express reliable predictions about the state of mangroves using a relatively small input from vegetation field work, and to decide whether a mangrove stand at a certain location has the potential to successfully renew and rejuvenate or whether anthropogenic pressure renders human interference such as imperative (Gahgouh-Guebas, undated). restoration Baseline ecological studies, monitoring and assessment of undisturbed mangrove forests and their comparison with more degraded and rehabilitated mangroves remain important to support management and conservation strategies, including the valuation of mangrove ecosystem good and services.

Considering the cost, time constraints and logistics involved in surveying and monitoring mangroves in the field, the most appropriate approach is to take advantage of both field surveys and remote sensing technologies (FAO 1994). There are considerable difficulties to evaluate the potential and sustainability of wetlands and mangrove areas. They are a dynamic environment affected both seasonally and annually by variable climatic conditions and, consequently, their surface area is also in a dynamic state and, therefore, difficult to calculate accurately. A second problem is one of accessibility. The very nature of wetlands provides a problem of marshy ground and dense reed beds. Access via foot, land transport or boats is often restricted by such circumstances. In addition, wetlands are often quite large, covering areas of tens of thousands of square kilometers. This, combined with the above factors, leads to the conclusion that a ground survey can often be difficult, time consuming and economically prohibitive. Thus, the use of satellite data, combined with field surveys, facilitates the monitoring of wetlands (Travaglia and Macintosh 1996).

6.3.2 Management systems

Table 1 illustrates the advantages and disadvantages of various mangrove management systems. Given their cross-sectoral nature, any envisioned management strategy of mangrove forests should take into account the present and potential uses and users. Those alternatives include: preservation (extraction of forest products is not allowed), subsistence forestry (which recognizes the dependence of coastal communities on mangrove products such as fuel wood, charcoal and timber for fences and posts, and the management of the forest will be the responsibility of the communities themselves), and commercial forestry. Ecological characteristics of mangroves are in general fairly well known, but detailed information is needed on local and regional variations. This is important in discussing socio-economic aspects of human settlements because mangroves have hinterlands with a great diversity of natural and socio-economic environments which exert a strong influence on ecological processes and human activities within the mangroves.

Table 1.Characteristics of mangrove management systems(Kunstadter et al. 1996)

Traditional systems

Transitional systems

Given the rapid and increasing rate of destruction of mangrove forests throughout the world, the development and implementation of mangrove-related ESTs, including effective replanting techniques and procedures, are becoming increasingly important (Stubbs and Saenger 2002). Mangrove forests can be considered as marine/coastal fisheries management bodies (Baran and Hambrey 1998).

Restoration and impact mitigation projects, which incorporate appropriate ESTs, have become one of the main ways to cope with destruction or degradation of wetlands, in particular, of mangrove forests, and the number of these initiatives has increased in recent years (Botero and Salzwedel 1999). Between 1970 and 1998, only 20 of the 121 countries with mangrove forests have attempted the rehabilitation of mangroves, and only nine countries have planted more than 10 km², and they have done so with various degrees of success (Field 1998). However, few of these projects have been sufficiently well monitored, limiting the availability and thus the use and transfer of lessons learnt. There is already a great deal of knowledge and experience in technologies for rehabilitating mangroves by artificial means around the world; however, many of these efforts are being carried out without taking into consideration the experience and lessons learnt from similar projects which have lead to duplication of efforts and waste of resources.

6.3.3 Marketing and trade

Well-managed charcoal industries using mangrove wood (e.g., based on sustainable supplies) can contribute to the well 25.0 which have elon nership of their THEV 0.85m of susting TW particula-TE 5.0 s which have

stakeholders is essential for any sustainable exploitation scheme to succeed on a long-term basis.

The participation of the private sector in the transfer of ESTs relevant to mangrove forests is still meager. Given the long gestation and risks associated with forest-resources investment, attractive incentives are needed to stimulate the active participation and involvement of the private sector. Improving the enabling environment to encourage private sector investments in all aspects related to sustainable forest management, including transfer of ESTs, would require efforts by the public sector to, *inter alia* (Chipeta and Joshi 2001):

- avoid excessive and inappropriate regulations and bureaucracy which increase costs;
- ensure stable and clear policies, institutional and operational environments;
- have adequate government commitments to, and support for, the forestry sector, and provide public incentives and investment in public infrastructure;
- seek ways for a augmenting the competitiveness of forestry as an investing option;
- develop instruments to hedge excessive market fluctuations and seek mechanisms for achieving better prices in international markets;
- seek ways to deter major markets from buying low-priced products supplied from unsustainable sources that unfairly

undermine responsible suppliers committed to achieving sustainable forest management;

- ensure training and skills development and research in the forestry sector;
- seek the political stability necessary to assure investors.

PART IV: THE WAY FORWARD

7. SETTING PRIORITIES FOR ACTION

7.1 Technology Assessment at the National Level

The formulation of public policies in support of EST transfer should be based on a proper assessment in the country and sectorspecific conditions. Technology assessment, i.e. identification and selection of ESTs, is a crucial step in the process of formulating public policies targeted at EST promotion. In the past, this has often been a grossly neglected area. There has been a tendency to rely on technological information from those supplying the technology. Tied aid and linkages between the suppliers and those providing finance have often prejudiced the choices in the pasthere ha 7

S

problems can be more significant than major strides in an area that is considered to have only marginal relevance, or where measures cannot be targeted appropriately. For instance, the impact of The relationship between the cost of implementing **h**e support strategy and the expected impact will determine the cost effectiveness. As an example, the acquisition cost of the EST is not a public cost, but one of the factors determining the uptake and eventual impact. Instead, any costs (e.g., R&D) incurred to reduce the acquisition cost would be taken into consideration when estimating the cost-effectiveness of public measures.

Formulating a policy for EST transfer should be a broad effort involving all relevant stakeholders. A participatory process is necessary to reduce the bias caused by subjective assessments and business or political interests involved in EST transfer. The most suitable framework for formulating an EST-related policy would be within comprehensive sector strategies, such as national forest programs (NFPs), the key features of which are broad-based participation and fostering consensus among parties. A national set of C&I for SFM as a reference point would provide a sound basis for decision-making. Integrating EST promotion as а comprehensive sector policy also provides a firm foundation for international funding agencies to target their EST-related activities.

Forestry organizations should also attempt to influence prioritization made at higher political levels, which may bring additional resources to the sector. As an example, Indonesia and China have included forestry among the priority sectors for EST promotion (TERI 2000).

7.2 Global Agenda

The selection of priority technologies for R&D is highly dependent on the local context, and especially in forestry there is great

harvesting areas, the private sector alone may have little incentive to develop such technologies.

Enhancing the competitiveness of sustainable forest management. In many forest areas the difference between financial returns from agriculture and forestry is often so large that marginal improvement in the profitability of forestry will not have an impact in terms of arresting deforestation. A better opportunity would probably be to increase the competitiveness of forestry in areas that have marginal value for agriculture such as grazing areas and bare lands. This may not necessarily reduce deforestation but enable expansion of forest cover in areas where it did not exist. Tree breeding and biotechnology enabling higher yields appear to be the main opportunity to increase the competitiveness of forestry in marginal areas. In absolute terms, the returns would probably remain much below those achieved in commercial plantations established by private enterprises, which is a major disincentive for their participation.

Enhancement of the qualities of multi-purpose trees. Improving the yield from multi-purpose trees would be highly desirable both

the private sector in relevant R&D is unlikely, owing to the limited purchasing power in the potential market among small holders.

Reducing the cost of forest monitoring. Lack of relevant and up-todate information on forest resources is a major constraint for the formulation of appropriate policies. The lack of adequate monitoring systems is also a significant impediment for efforts to draw benefit from carbon trade. One of the main constraints to adoption of appropriate remote sensing systems is the high cost of acquiring and maintaining necessary hardware. Development of low-cost solutions to reduce the initial investment cost would be conducive to their increased uptake. It should be noted that this does not do away with the need to remove institutional and social constraints to their adoption and effective use. The private sector will probably contribute to solutions suitable for use at enterprise level, but the technology needs for assessments at the national level are slightly different and often context specific, which reduces the private sector's interest to participate in R&D.

Expanding the use of bioenergy. Regarding bioenergy, there is huge potential to increase its use, owing to substantial amounts of waste generated in connection with timber harvesting and processing. The private sector is participating in technology development and has recently made available, for example,, small-scale biopower plants suitable for tropical countries (Kuitunen 2003). The need for support from the international community should, therefore, focus on fostering public-private partnerships. The private sector has probably less interest to participate in the development of products for use by individuals such as improved stoves, and support from the public sector would be justified. However, past experience shows that the main barrier to the adoption of improved stoves is not necessarily their cost, but free access to fuelwood, which makes the users less appreciative of

increased energy efficiency. One should, therefore, carefully analyze to what extent and where product development can overcome such constraints.

The support provided by the international community should be targeted primarily to the LDCs, which currently have trouble benefiting from market-based EST transfer. In a first phase, the emphasis should be placed on developing mechanisms that encourage the adoption of existing ESTs. One of the key measures is to support the development of intermediaries to facilitate transactions between the EST providers and users. The long-term objective, however, should be to develop capacity for creation of new technology. In countries which have moved along this path and already possess more developed capacities for R&D, the international community should focus on fostering the development of public-private partnerships as a means to mobilize resources.

8. RECOMMENDATIONS FOR PROMOTING THE INTERNATIONAL TRANSFER OF ENVIRONMENTALLY SOUND TECHNOLOGIES

The most important measures that would facilitate EST transfer but are not specific to it include the following:

Outside the forest sector

- (i) Adjusting export credits to incorporate conditions favoring EST transfer
- (ii) Stabilizing the macroeconomic framework; strengthening legal institutions
- (iii) Creating enabling conditions to attract FDI; promoting joint ventures with EST
- (iv) Removing import tariffs and other trade barriers related to ESTs (hardware, software, services)
- (v) Contributing to the development of appropriate regulations for IPRs
- (vi) Enhancing SMEs' access to investment financing with priority on ESTs
- (vii) Exploring the opportunities to introduce fiscal and financial incentives for private enterprises to adopt ESTs
- (viii) Establishing micro-credit schemes linked with ESTs available to communities
- (ix) Removing monopolies, oligopolies and other market imperfections restricting the domestic supply of ESTs

In the forest sector

(i) Improving the legal and regulatory framework for environmental management to internalize externalities
- (ii) Making forest environmental law and enforcement effective
- (i) Establishing secure land tenure and resolving conflicts over land rights
- (ii) Eliminating policies reducing the relative competitiveness of forestry as a land use
- (iii) Increasing consumer and corporate awareness on SFM
- (iv) Promoting adoption of environmental and social standards by public and private entities
- (v) Improving education and training on environmental management and social issues in forest management

However, there are a few actions that can be taken rather independently from other considerations and targeting especially at EST transfer in the forest sector. The most important ones among them are:

- (i) *Strengthening of R&D capacities.* This would contribute directly to facilitating EST transfer. Lack of capacity to assess, select, and adapt ESTs is one of the major impediments to successful transfer. Investment in R&D also represents a possibility to reduce the cost of ESTs and enhance their competitiveness, which in all circumstances is conducive to increasing transfer and adoption. Special attention should be paid to encouraging the development of ESTs with social and environmental benefits that cannot be captured through market mechanisms.
- (ii) Establishment of intermediaries to facilitate EST transfer. Lack of information is a major impediment to EST transfer, especially among SMEs and communities. Past experience suggests that enterprises require information for highly specific needs, and that it is best delivered by locally-based intermediaries with access to a financing facility. Support

could be provided to private sector consultants, research institutions, technology centers, public extension services, farmers' associations and NGOs to provide these services through contracting and project funding.

(iii) *Technology partnership programs.* These can be fostered in conditions where government institutions and science and technology centers are sufficiently strong to form a balanced and mutually beneficial partnership with private enterprises (e.g.,

support EST transfer (see above) should receive adequate technical and financial support. Direct financial support (e.g., subsidies) to transfer of specific ESTs may be considered in individual cases where the enabling environment is adequate to secure a successful transfer. These opportunities are likely to arise especially in forest industries and plantation development.

- (vii) EST assessments. To define a public policy for EST promotion and relevant support strategies for effective transfer requires a broad analysis of issues – often in qualitative terms - and value judgments. To reduce the possible bias due to the subjective views of business and political interests, it is advisable that such processes are carried out in a participatory and transparent manner involving all relevant stakeholders.
- (viii) Integration of ESTs into national policies. Policies for EST transfer should be formulated as part of comprehensive sector strategies such as national forest programs (NFPs), enabling broad-based participation and balancing of conflicting objectives. The commitments emanating from

9. CONCLUSIONS

Technology is a central ingredient of economic growth. Environmentally sound technologies help mitigate the environmental impacts of growth. Developing countries that are most dependent on imported technologies have difficulties in benefiting from global technology flows that are predominantly within the private sector in the industrialized world. Environmentally sound technologies have great potential to contribute to sustainable forestry and forest industries. Despite the political emphasis given to technology transfer, the obstacles are persistent.

This study identified barriers and potential technologies as well as recommendations on how to create enabling conditions for the successful and sustainable transfer of ESTs. It suggested approaches for improving EST transfer for SFM. It provided also an overview of international processes and agreements relevant to environmentally sound technologies (ESTs) for sustainable forest management (SFM), including a special chapter on mangrove forests

The majority of international processes for sustainable development and multilateral environmental agreements contain clauses addressing technology transfer. The most important multilateral environmental agreement with references to technology transfer in forestry is the United Nations Framework Convention on Climate Change, which has direct implications for the forest sector. The Convention on Biological Diversity, the Convention to Combat Desertification and various agreements of the World Trade Organization also address technology transfer. IPF and IFF have prepared proposals for action related to the transfer The framework developed by Puustjärvi et al. emphasized the need to view barriers to the successful transfer of ESTs using a demandsupply based systems approach. They stated also that analysis of barriers, including action aimed at improving EST transfer, should make use of the division of barriers to those specific to ESTs in general, general barriers within the forest sector, and general barriers outside forest sector. Regarding an enabling environment for EST transfer, most existing barriers are not specific to ESTs or the forest sector. Instead, they result from international agreements (e.g., WTO agreements) or national policy or macroeconomic frameworks (e.g., import tariffs for technology), which are designed outside the forest sector. There can also be fundamental bottlenecks impeding EST adoption (e.g., lack of forest law enforcement capacity). The need to promote EST transfer is a contributing argument, but not a key driver for decisions to take action to eliminate such constraints. While one can and should attempt to influence these decisions from the perspective of EST transfer, it is likely that many of the barriers will prevail. Therefore, the strategies to promote EST transfer have to adapt and be designed so that they can function in an imperfect environment.

The key to successful EST transfer is that it is demand-driven. The user should have a strong motive for acquiring ESTs, such as reduced costs of environmental management, increased output of environmental benefits, or increased productivity with environmental benefits as a "by-product", etc. Transfer may take place governmentto-government, but in order to ensure that demand is the driving force behind the transaction, it is desirable that they are carried out through the market mechanism between private actors or, as a second priority, involving public for-profit entities. The market mechanism does not guarantee that a technology produces environmental benefits, but it secures that the buyer/user perceives to gain from it, which is a precondition for continued EST use. Reliance on commercial

with large business volumes, neglecting the needs of the poor. Owing to this imbalance, one of the main duties of the public sector with respect to EST transfer is to support disadvantaged groups in gaining access to them. The same logic works also at the international level, where private investment flows and private sector-led EST transfer concentrates on a limited number of newly industrialized countries. Elsewhere, the potential for commercial EST transfer is limited, and providing ODA-based support is both necessary and justified. The primary target should be the least developed countries, where the forest sectors are highly dependent on external financing.

To make the impact of EST transfer sustainable, a broader set of activities going beyond the transfer of individual technologies is necessary. There are a number of measures both outside and inside the forest sector that would facilitate EST transfer but are not specific to it. These are related mainly to the macroeconomic, fiscal, legal and institutional framework.

- (iv) Applying environmental criteria in privatization processes, concession management contracts, public procurement, etc.
- (v) Educating decision-makers about ESTs
- (vi) Providing technical and financial support to the transfer of specific ESTs
- (vii) EST assessments
- (viii) Integration of ESTs into national policies and national forest programs.

The analysis of mangrove forests illustrated that the general framework for EST transfer captures the barriers inhibiting transfer of technologies important for this very specific ecosystem. The specific nature of mangrove forests stresses the importance of technology assessment and demonstrates the important role of South-South transfer and indigenous technologies. It is likely that the framework outlined in this study for improving technology transfer will benefit especially the management of ecosystems like mangrove forests and

REFERENCES

Apan, A. A. 2000. Fellowship Report - A review carried out under an ITTO Fellowship has evaluated the application of GIS in tropical forestry . Tropical Forest Update Volume 10, No 1 ISSN 1022-5439 2000/1.

Bacon, P.R. 1997. The role of the Ramsar Convention in mangrove management. Intercoast Network: International Newsletter of Coastal Management (Special Edition 1, pp. 25m56N

Davidson, O. R. 2001. CDM and Technology Transfer: African Perspectives. Point de vue. Bulletin Africain Bioressources Energie Développement Environnement n° 14 hors série octobre 2001.

Detragiache, E. 1998. Technology diffusion and international income convergence. Journal of Development Economics 56: 367-392.

Durst, P.D. and Enters, T. 2001. Illegal logging and the adoption of reduced impact logging. Paper presented at the Forest Law Enforcement and Governance: East Asia Regional Ministerial Conference, 11-13 September 2001, Denpasar, Indonesia.

Dykstra, D. P. 2001. Reduced impact logging: concepts and issues. Paper presented at the International Conference on Application of Reduced Impact Logging to Advance Sustainable Forest Management: Constraints, Challenges and Opportunities, 26 February to 1 March 2001, Kuching, Sarawak, Malaysia.

Easterly, W. and Levine, R. 2002. It's not factor accumulation: stylized facts and growth models. Central Bank of Chile, Working Papers No 64. 64 p.

Eastman, J. R. and Toledano, J. 1996. Final Report GIS Technology Transfer: An Ecological Approach. The Clark Labs for Cartographic Technology and Geographic Analysis, Clark University, USA. U.S. Agency for International Development (USAID) Bureau for Africa / Office of Sustainable Development (SD) / Productive Sector Growth and Environment Division (PSGE). Eaton, J. and Kortum, S. 1999. International patenting and technology diffusion: theory and measurement. International Economic review 40: 537-570.

ECOSOC. E/CN.17/IPF/1996/5.

El-Ashry, M. T. and Martinot, E. 2001. Transfer of environmentally-safe technologies: GEF successes with developing countries. Asia Pacific Tech Monitor 18(4): 15-20 (2001).

EPA. 2002. Profile of the Pulp and Paper Industries 2nd Edition. Industry Notebooks. US Environmental Protection Agency.

ESCAP. 2001. Analysis of a Survey on the Impact and Implications of Chapter 34 (Transfer of Environmentally Sound Technology, Co-operation and Capacity Building) of Agenda 21 on the ESCAP Region. IN: Regional Cooperative Policy Mechanism for the Transfer, Financing and Management of Environmentally Sound Technology (ST/ESCAP/2055).

Field, C.D. 1998. Rehabilitation of mangrove ecosystems: an overview. Marine Pollution Bulletin 37 (8-12): 383-392.

FAO. 1994. Mangrove forest management guidelines. FAO Forestry Paper 117, 319 pp.

FAO. 1998. Proceedings of the Regional Expert Consultation on Modern Applications of Biomass Energy. Kuala Lumpur, Malaysia 6–10 January 1997. Regional Wood Energy Development Programme in Asia GCP/RAS/154/NET. Food and Agricultural Organization. FAO. 1997. State of the World Forests 1997.

Franks, T. and Falconer, R. 1999. Developing procedures for the sustainable use of mangrove systems. Agricultural Water

Grossman, G.M and Helpman, E 1994. Endogenous innovation in the theory of growth. Journal of Economic Perspectives 8: 23-44.

Grubler, A. and Nakicenovic, N. 1991. Long waves, technology diffusion, and substitution. Review 14: 313-342.

Hausmann, R. and Rodrik, D. 2003. Economic development as self-discovery. Journal of development Economics 72: 603-633.

Heaton, G.R., Banks, R.D., Ditz, D.W. 1994. Missing links: technology and environmental improvement in the industrialized world. World Resources Institute, Washington, D.C.

Hildén, M., Lepola, J., Mickwitz, P., Mulders, A., Palosaari, M., Similä, J., Sjöblom, S. and Vedung, E. 2002. Evaluation of environmental policy instruments - a case study of the Finnish pulp & paper and chemical industries, Monographs of the Boreal Environment Research No. 21, p. 134.

Hoffman, U. 1999. An analysis of Effective Operationalization of Provisions on Transfer of Environmentally Sound Technologies to Developing Countries in Multilateral Environmental Agreements, Pursuant to Agenda 21. Draft Discussion Paper. Paper presented at second workshop on "Strengthening Research and Policy-making Capacity on Trade and Environment in Developing Countries". Los Baños, Philippines, 11-13 November 1999.

ICPIC. 1997. Cleaner production in a pulp and paper mill. Technical case study no 21. The International Cleaner Production Information Clearinghouse.

IETC. Transferring Technologies. Concept Paper.

IFF. 1998. Transfer of environmentally sound technologies to support sustainable forest management. Commission on Sustainable Development, Intergovernmental Forum on Forests. Second session, Geneva, 24 August-4 September 1998. Report of the Secretary-General.

IIED 1996. Towards a sustainable paper cycle.

IISD. 2003. Summary Report of the Norway/UN Conference on Technology Transfer and Capacity Building: 23 - 27 JUNE 2003. International Institue for Sustainable Development.

IPCC. 2000. Methodological and Technological Issues in Technology Transfer. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 432 pp.

Juma, C. 1994. Promoting International Transfer of Environmentally Sound Technologies: The Case for National Incentive Schemes, in Helge Ole Bergesen and Georg Parmann (eds.), Green Globe Yearbook of International Co-operation on Environment and Development 1994 (Oxford: Oxford University Press), 137–148.

Katila, M. and Puustjärvi, E. 2003. Impact of New Markets for Environmental Services on Forest Products Trade (unpublished draft). Document prepared in collaboration with Ecosecurities Ltd. FAO Impact Assessment of Forest Products Trade in the Promotion of Sustainable Forest Management (GCP/INT/775/JPN).

Kelaher, B.P., Underwood, A.J. and Chapman, M.G. 1988. Effect on the semaphore crab *Heloecius cardiformis* in temperate mangrove forests. Journal of Experimental Marine Biology and Ecology 227: 281-300.

Killmann, W., Bull, G.Q., Sc-3cb, O., and Pulkki, R. 2001. Reduced impact logging: does it cost or does it pay? Paper Llanto, R.B. 2000. Philippine Experience in The Promotion of Environmentally Sound Technologies (ESTS). Department of Science and Technology, Philippines.

Mansfield, E. 1963. The speed of response of firms to new technologies. Quarterly Journal of Economics 77: 290-311.

Martinot, E., Sinton, J.E., Haddad, B,M. 1997. International technology transfer for climate change mitigation and the cases of Russia and China. In: Socolow, R.H., Anderson, D., Harte, J. (eds.) Annual Review of Energy and Environment. Annual Reviews Inc., Palo Alto, California. Pp. 357-401.

Mathews, J. 1995. High technology industrialization in east Asia: the case of semiconductor industry in Taiwan and Korea. Contemporary Economic Issues, Series No. 4.

Mickwitz, P., Hyvättinen, H. and Kivimaa, P. 2003. The role of policy instruments for the innovation and diffusion of environmentally friendlier technologies. A paper presented at GIN2003: Innovating for Sustainability, The 11 th International Conference of the Greening of Industry Network, October 12-15, 2003, Hotel Nikko, San Francisco.

OECD. 2000. Official Development Assistance to Forestry 1973-1998.

OPIC. 1999. OPIC Environmental Handbook April 1999. The Overseas Private Investment Coproration.

Owusu, R.1999. GM technology in the forest sector. A scoping study for WWF.

Paez-Osuna, F. 2001. The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environmental Management 28 (1): 131-140.

Parente, S.L. and Prescott, E.C. 1994. Barriers to technology adoption and development. Journal of Political Economy 102(2): 298-321.

Parikh, J.K. 2000. Linking Technology Transfer with Clean Development Mechanism (CDM): A Developing Country Perspective, UNU/IAS EMD Series, 6, 2000.

Porter, M.E. and Stern, S. 2001. National innovative capacity. In: The Global Competitiveness Report 2001-2002. Oxford University Press, New York.

Puustjärvi, Esa, Katila, Marko and Simula, Markku. 2003. Transfer of Environmentally Sound Technologies from Developed Countries to Developing Countries. Background document for the Ad Hoc Expert Group on Finance and Transfer of Environmentally Sound Technologies, United Nations Forum on Forests. Indufor. Helsinki, Finland.

Reddy, S. and Painuly, J.P. 2004. Diffusion of renewable energy technologies – barriers and stakeholders' perpectives. Renewable

Rodrik, D. 2004. Industrial policy for the twenty-first century. Paper prepared for UNIDO. Draft version, September 2004.

Salmi J., Oksanen T. and Simula M. 2001. Assessing the Feasibility and Operationalization of an Investement Promotion Entity (IPE) for Sustainable Forest Management: Demand and Supply Aspects. Indufor Oy. Finland.

SANet. 2003. Sustainable alternatives network, web-site at http://www.sustainablealternatives.net viewed on 28 October 2003.

Sayer, J.A., Vanclay, J.K. and Byron, N. 1997. Technologies for Sustainable Forest Management: Challenges for The 21st Century. Commonwealth Forestry Congress, Victoria Falls, Zimbabwe, May 1997. Centre for International Forestry Research.

Schumpeter, J. 1942. Capitalism, socialism and democracy. Harper, New York.

Sedjo, Roger. 2001. Biotechnology's Potential Contribution to Global Wood Supply and Forest Conservation. November 2001 • Discussion Paper 01–51. Resources for the Future.

Sims R.E.H. 2002. The Brilliance of Bioenergy - Environmentally Sound Technologies - or Not? Presentation at World Renewable Energy Policy and Strategy Forum "Renewable Energies - Agenda 1 of Agenda 21" June, 13 - 15, 2002 Messe Berlin Hall 7, Room Berlin.

Sinani, E. and Meyer, K.E. 2004. Spillovers of technology transfer from FDI: the case of Estonia. Journal of Comparative Economics 32: 445-466.

Spalding, M.D., Blasco, F. and Field, C.D. 1997. World mangrove atlas. International Society for Mangrove Ecosystems, Okinawa, Japan.

STOA. 2001. Technology Cooperation in The Field of Environmentally Sound Technologies Final Study. Working paper for the STOA Panel. Luxembourg, June 2001 PE 297.572/Fin.St. Directorate General for Research Directorate A Division Industry, Research, Energy, Environment and STOA Scientific and Technological Options Assessment.

Stoneman, P. 1983. The economic analysis of technological change. Oxford University Press, New York.

STRI. 2003. Transfer of Environmentally Sound Technologies for the Sustainable Management of Tropical Forests. Background document for the Ad Hoc Expert Group on Finance and Transfer of Environmentally Sound Technologies, United Nations Forum on Forests. Washington, D.C.

Stubbs, B.J. and Saenger, P. 2002. The application of forestry principles to the design, execution and evaluation of mangrove restoration projects. Bois et Forêts des Tropiques 273 (3): 5-21.

Sykes, M., Yang, V., Blankenburg, J. and AbuBakr, S. 1999. Biotechnology: Working with Nature to Improve Forest Resources and Products. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53705 1999. International Environmental Conference TAPPI Proceedings. Travaglia, C. and Macintosh, H. 1996. Wetlands monitoring by ERS Synthetic Aperture Radar (SAR) data in Zambia. From: Wetlands monitoring by ERS-SAR data – a case study: Lake Bangweulu wetland system, Zambia. RSC Series 69, FAO 1997.

Tsoutsos, T.D. and Stamboulis, Y.A. 2004. The sustainable diffusion of renewable energy technologies as an example of an innovation-focused policy. Technovation. Forthcoming.

Turkenburg et al. 2000. Renewable energy technologies, in (eds. J. Goldemberg et al) World Energy Assessment: Energy and the Challenge of Sustainability. UN Development Programme, New York, 2000.

TVE. 2003. Seeds of Conflict; Episode of television documentary "Earth Report" aired by BBC World Service in October 2003. Television Trust for the Environment.

UN. 2002. Implementing Agenda 21. Report of the Secretary General (E/CN.17/PC.2/7). Presentation at the Johannesburg Summit August 26- September 4, 2002.

UNCCD. 2003. Convention to Combat Desertification web-site.

UNEP. 2003. Technology transfer: The seven "c"s for the successful transfer and uptake of environmentally sound technologies. International Environmental technology Centre, United Nations Environment Programme, Osaka, Japan. 49 p.

UNFCCC. 1998. Technical Paper on Terms of Transfer of Technology and Know-how: Barriers and opportunities related to the transfer of technology (FCCC/TP/1998/1).

UNFF. 2003. Note by the Secretariat: Transfer of environmentally sound technologies for sustainable forest management: an overview (E/CN.18/AC.2/2003/3). Working document prepared for the Meeting of the Ad hoc Expert Group on Finance and Transfer of Environmentally Sound Technologies (Geneva, 15-19 December 2003).

UNFF. 2003. Report of the Ad hoc Expert Group on the Finance and Transfer of Environmentally Sound Technologies (15-19 December 2003, Geneva) (E/CN.18/2004/5).

UNIDO. 2002. Assessing the Uptake of Environmentally Sound Technology. Highlights from a UNIDO Survey in Nine Developing Countries. Unido and the World Summit for Sustainable Development.

UNIDO. 2000. Technology transfer: from Data to Knowledge. Background Paper "2nd CTI/Industry Joint Seminar on Technology Diffusion in Asia & "UNFCCC: Asia & Pacific Regional Workshop on Transfer of Technology" 13-19 January 2000.

Uusivuori, J. and Laaksonen-Craig S..2001. Internationalization of Forest Industries. In: Palo, M., J. Uusivuori & G. Mery (ed.). World Forests, Markets and Policies. Kluwer Academic Publishers, Dordrecht, pp. 97-103.

Warhurst, A. 1999. Technology Transfer and the Diffusion of CEVeration Technology States and the Diffusion of The Technology States and the Diffusion of Technology States and the Diffusion of Diffusion of the Diffusion of Diff

Wiener, J.B. 2004. The regulation of technology, and the technology of regulation. Technology in Society 26: 483-500.

World Bank. 2003. Global Development Finance – Striving for Stability in Development Finance.

Vertinsky, L. and Vertinsky, I. 1998. Identification and Assessment of Mechanisms for Technology Transfer. Report Submitted to Natural Resources Canada, The Canadian Forest Service, International Affairs.

Xiliang, Z. Enabling the Transfer of Environmentally Sound Technologies in the Context of Climate Change: Some Lessons from Asia. Institute for Techno-Economics and Energy Systems Analysis, Tsinghua University, Beijing 100084, China.

Zhang, X. and Zou, H. 1995. Foreign technology imports and economic growth in developing countries. Policy research Working Paper 1412, The Word Bank, Washington, D.C.